

SVD48 Series

Servo Driver User Manual

Version: V1.00

All rights reserved. Reproduction is not allowed [Please read this manual carefully before use to avoid damaging the drive]

Changzhou Fulling Motor Co., Ltd.

Content

Content	1
Chapter 1 Precaution	4
1.1 Product Introduction	4
1.2 Characteristics	4
1.3 Application Area	4
1.4 Confirmation Items (Confirm Packaging and Accessories)	4
1.5 Transportation and Storage Conditions	6
1.6 Technical Requirements	6
1.7 Operator Requirements	6
1.8 Environmental requirements	7
Chapter 2 System Configuration and Model Description	8
Chapter 3 Installation Dimensions	9
3.1 Drive Installation	9
3.2 Installation of Servo Motor	14
Chapter 4: System Interface and Wiring	15
4.1 Names and Functions of Drive Parts	15
4.2 External Wiring Diagram	22
Chapter 5: FULLING-tech Software User Guide	23
Read before use (The software connects to PC through USB-UART convert cable)	23
5.1 Connection between Driver and Software	26
5.2 Motor Parameter and Control Parameter Management	27
5.3 Simple Debugging	29
5.4 IO Port Settings	31
5.5 Trigger-based Oscilloscope	34
5.6 Historical Errors and Alarm	37
5.7 Driver Parameter Reading and Writing	39
5.8 Load Firmware	40
Chapter 6: Operation Mode Introduction	42
6.1 Speed Mode Introduction	42
6.2 Position Mode (1)	46
6.3 Torque Mode (4)	50
6.4 Pulse Mode (-4)	52
6.5 Homing Mode (6)	54
Chapter 7: Performance Tuning	72
7.1 Speed Loop Tuning	72
7.2 Position Loop Tuning	77
7.3 Comprehensive Adjustment	79
Chapter 8: Alarm Troubleshooting	80
8.1 Troubleshooting with LED Alarm	80
8.2 Troubleshooting with Alarm Code (603F00)	80
8.3 Troubleshooting with Error States	84
Chapter 9 Common Object List	90

9.1 Common Object List	90
9.2 Unit Conversion	107
Chapter 10 UART Communication	109
10.1 UART Communication Format	109
10.2 UART Communication Examples	110
Chapter 11 RS485 Communication	115
11.1 RS485 Communication Hardware Introduction	115
11.2 RS485 Communication Format	115
11.3 RS485 Communication Examples	116
Chapter 12 CANopen Communication	124
12.1 Hardware Description	125
12.2 CAN Communication	125
12.3 CAN Communication Examples	133
Appendix I: Configuring Third-Party Motors	143
Appendix II: Use of Braking Resistor	147
Appendix III: Selection of Fuse Specifications	148

Manual Version Revision Record

Date	Revision
2024.10.23	V1.0

Chapter 1 Precaution

1.1 Product Introduction

SVD48 series servo drive is a cost-effective servo motor drive independently developed by Changzhou Fulling Motor Co., Ltd .

It adopts a 32-bit microcontroller based on ARM core with 512K bytes of flash memory, with high integration and complete protection measures.

This series of drivers adopts a new control technology, which has the characteristics of small size, good performance, and high stability.

1.2 Characteristics

• Adopting ARM32-bit Cortex [™]-M3 Core chip;

- Voltage range 20V-56V, supports wide voltage input;
- Supports incremental differential encoders (5V) and Tamagawa protocol communication encoders;
- Support external braking resistors;
- Supports serial communication, RS485 communication, and CAN communication;

Support input configuration (driver enable, alarm reset, emergency stop, positive limit, negative limit, multi-stage speed control, multi-stage position Control, etc.);

• Support output configuration (driver ready, driver error, motor zero speed, motor brake effective, limit effective, etc.);

• Equipped with overvoltage protection, undervoltage protection, motor overheating (I ² T) protection, short circuit protection and other driver protections;

• Ultra high cost-effectiveness.

1.3 Application Area

•Logistics robots: automatic navigation freight robots, shuttle cars, automatic parking robots, etc;

- •Logistics equipment: fully automatic sorting lines, three-dimensional warehouses, etc;
- •Medical equipment industry: small-scale systems;
- •Other situations that require high response speed and high positioning accuracy.

1.4 Confirmation Items (Confirm Packaging and Accessories)

Check if the packaging is intact without obvious damage, deformation, or moisture.

Confirm that the received goods match the ordered product model, quantity, and specifications.

Check that the appearance of the drive and motor is intact without obvious scratches, cracks, or rust.

Confirm that the goods include the user manual, warranty card, certificate of conformity,

and other related documents for the drive and motor.. Table 1-1 SVD4812 Goods List

Goods List				
Item	Model	describe Quar		
Driver	SVD4812RC-AA	Driver	1	
Dhua ia		2PIN spacing 5.08		
Connoctor	2EDGK-5.08-2P	Used for power supply and	2	
Connector		braking resistor interfaces		
Dlug in		4PIN spacing 5.08		
Connoctor	2EDGK-5.08-4P	Used for logical power	1	
Connector		interface		
Plugin		2PIN spacing 3.81		
Connector	TB13-15K/3.81-02P	Used for logical power	1	
Connector		interface		
Plug-in		2x7PIN spacing 3.5	1	
Connector	15EDGKNG-3.5-2.7F	Used for IO interface	l	
Anti-static	Elat anti statia bag 140*200mm		1	
Bag	Flat anti-static bag 140 2001111	-	I	
Dev	Material:K6K(Very hard)		1	
DUX	Diameter:17*9*4mm	-	I	

Table 1-2 SVD4822 Goods List

Goods List			
Item	Model	describe Q	
Driver	SVD4822RC-AA	Driver	
Dlug in		2PIN spacing 5.08	
Connector	2EDGK-5.08-2P	Used for braking resistor	1
Connector		interfaces	
Dlug in		2PIN spacing 3.81	
Connector	TB13-15K/3.81-02P	Used for logical power	1
CONNECTOR		interface	
Plug-in		2x7PIN spacing 3.5	1
Connector	15EDGKNG-3.5-2.7 P	Used for IO interface	I
Anti-static	Flat anti statia bag 140*200mm		1
Bag	Flat anti-static bag 140 2001111	-	I
Boy	Material:K6K(Very hard)		1
DUX	Diameter:17*9*4mm	-	I

Table 1-3 SVD4835 Goods List

Goods List				
Item	Model	describe	Quantity	
Driver	SVD4835 RC-AA	Driver	1	
Plug-in	TB13-15K/3.81-02P	2PIN spacing 3.81	1	

Connector		Used for logical power	
	interface		
Plug-in		2x7PIN spacing 3.5	1
Connector	ISEDGRING-3.3-2X7F	Used for IO interface	I
Anti-static	Elet enti etetia bag 140*200mm		1
Bag	Flat anti-static bag 140 2001111	-	Ι
Poy	Material:K6K(Very hard)		1
DUX	Diameter:17*9*4mm	-	I

1.5 Transportation and Storage Conditions

Before transportation, check if the appearance of the drive and motor is intact, without obvious damage or deformation, and if the cables are firmly connected without fractures or wear.

During transportation, use a dedicated packaging box or pallet to avoid direct contact with the ground or other objects to prevent impact or compression. The packaging box or pallet should have obvious signs such as "Fragile," "Attention to Moisture," "Do Not Invert," etc. Handle with care during transportation to avoid violent vibrations or bumps, and try to maintain a horizontal state without tilting or inverting.

After transportation, store the drive and motor in a dry, ventilated environment free from corrosive gases, avoiding direct sunlight or high temperatures. Keep the packaging box or pallet intact when storing, and do not stack too high or too heavy to prevent deformation or damage.

1.6 Technical Requirements

To use this product correctly and safely, you need to pay attention to the following aspects: The operating methods and precautions of this product, as well as possible risks and preventive measures, are clearly stated and warned in this document. You must read and comply with this information carefully to ensure that the operation process meets safety standards. Ignoring this information may cause personal injury or property loss. Therefore, before operating this product, please study and master the content in this document carefully.

1.7 Operator Requirements

Safety Awareness: Operators must have a good sense of safety, follow operating procedures and safety guidelines to ensure their own and equipment safety.

Technical Knowledge: For complex drive and motor systems, operators need to have certain technical knowledge to understand and solve some common faults and problems.

Follow Operation Guide: Operators should follow the user manual provided by the manufacturer, correctly set and adjust parameters to achieve the expected operating effect.

Avoid Operational Errors: Operators should avoid misoperation or improper operation,

such as overloading, reversing, etc., to avoid damaging equipment or causing safety risks. Emergency Handling: Operators need to know how to deal with emergencies, including stopping equipment, cutting off power, etc., to prevent accidents.

1.8 Environmental requirements

Table 1-2	Environmental	requirements
	Linnorman	requiremento

Environment	Conditions		
Operating temperature	0°C - 40°C		
Operating humidity	5 - 95%RH (non-condensation)		
Storage temperature	-10℃ - 70℃ (non-freezing)		
Storage humidity	Below 90%RH (non-condensation)		
Protection class	IP20		
Installation site	Indoor, free from sunlight, corrosive gas, flammable gas, oil gas, and dust		
Installation method	Vertical installation or horizontal installation		
Barometric pressure	85kpa~105kpa		
Altitude	Rated working altitude below 1000 meters, for working altitudes above 1000 meters, reduce by 1.5% for every 100 meters increase, maximum working altitude 4000 meters		

Chapter 2 System Configuration and

Model Description

 SVD
 4812
 NONE/RC/EC/ER
 AA
 XXX

 ①
 ②
 ③
 ④
 ⑤

①Driver Series Name: SVD Series

② Rated Voltage/Rated Current:

4812: 48V 12A

③ Communication Type

- RC: RS-485 Communication + Can Communication
- EC: Ether-Cat Communication + Can Communication
- ER: Ether-Cat Communication + RS-485 Communication

④ Encoder Type

AA: Differential UVW + Differential ABZ Encoder, Tamagawa Encoder, TTL UVW + Differential AB encoder

- HD: Differential UVW + Differential ABZ Encoder
- CT: Tamagawa Encoder
- HN: TTL UVW Signal
- HE: TTL UVW + Differential AB encoder
- CA: Custom Communication Magnetic Encoder

5 Serial Number

This code serves as the default function configuration code for the drive, including motor parameters, control loop parameters, I/O functions, communication function parameters, etc. Many formulas come from customer's field application needs, aiming to facilitate customer use, and to meet customer's field use as much as possible without the need for further configuration of related parameters.

Chapter 3 Installation Dimensions

3.1 Drive Installation

3.1.1 Driver Installation Dimensions

Figure 3-1 SVD4812RC-AA Drive Installation Dimensions

Fig.3-2 SVD4822RC-AA Driver Installation Dimensions

Fig.3-2 SVD4835RC-AA Driver Installation Dimensions

3.1.2 Precautions of Servo Drive Installation

Here are some precautions for installing the drive:

Location and Installation: The drive should be installed in a dry, well-ventilated environment, away from humidity, dust, and corrosive gases. Also, avoid installing in areas with high temperatures, direct sunlight, or frequent vibrations.

Fixing and Connection: Ensure that the drive is firmly installed on a stable bracket or surface. All screws and connectors should be properly tightened to prevent loosening and vibration. When connecting cables, ensure that the cable plugs and sockets are firmly in place to avoid pulling on the cables.

Heat Dissipation: If heat-generating components are used, such as braking resistors, heat

dissipation should be considered. Ensure that there is enough space around the drive for heat dissipation, and avoid piling up other objects that may affect the cooling effect. When installing the drive, the distance shown in Figure 3-2 can be used as a reference.

Electrical Connection: Ensure that the power and motor cables are correctly connected. Follow the correct wiring diagram or instruction manual. Ensure that the power supply meets the requirements and the voltage is stable. Pay attention to grounding and insulation issues to avoid electrical problems.

Protective Measures: When installing the drive, prevent foreign objects from entering the interior of the drive, especially conductive or flammable materials such as metal debris, dust, and oil. The drive and motor are precision equipment, avoid subjecting them to external forces and vibrations.

Inspection and Testing: After installation, carry out the necessary inspections and tests to ensure that the connections of the drive are correct and the functions are normal. Then, you can proceed with the corresponding tests according to the manual.

EMC Requirements: If the drive will be used in an industrial electromagnetic environment, it is necessary to comply with the requirements of electromagnetic compatibility (EMC). It may be necessary to install power filters, shielded cables, etc., to reduce interference and electromagnetic radiation.

Safety and Maintenance: After installation, ensure that appropriate safety measures are in place to prevent unauthorized personnel from approaching the drive. Regularly inspect the drive and connections to ensure there is no loosening or damage.

Please read the relevant drive installation manual and instructions in detail before installation, follow the guidance and recommendations provided by the manufacturer. If there is any uncertainty, it is recommended to consult the company for technical support.

Fig.3-3 Recommended Installation Distance Example Diagram

3.1.3 Servo Drive Related Parameters

Driv	e Model	SVD4812RC-AA	SVD4822RC-AA	SVD4835RC-AA
Supported Motor Type		Servo motor		
Input Voltage Range			20~56V	
		12Arms (without	22Arms (without	35Arms (without
Continu	ous Current	15arms (with	30arms (with	45arms (with
Deal	. O			
Pear	Current	45Ap	100Ар	160AP
Feedb	ack Signal	Incremental differe communication enc	ntial encoder(5V)、 oder	Tamagawa protocol
Dynan	nic Braking	Support external bra	aking resistor	
Dynamic E	Braking Voltage	DC65V(default value, settable)		
Over-vo V	oltage Alarm oltage	DC70V		
Under-v V	oltage Alarm oltage	DC18V		
Coolir	ng Method		Natural cooling	
V	Veight	0.34kg 0.6kg 0.8kg		0.8kg
	line on set	4 digital inputs,	common COMI te	rminal, high level:
Input		12VDC~30VDC, low level: 0~5VDC, maximum frequency		
	Specifications	1kHz, input impedance 5kΩ		
Common	lanut	Configurable functions include driver enable, alarm reset,		
Functions	Functions	emergency stop, positive limit, negative limit, multi-speed		
		control, multi-position control, etc.		
	Output 2 digital outputs, common COMO terminal			al

	Specifications			
	Output	Configurable functions include driver ready, driver error,		
	Functions	motor zero speed, motor brake effective, limit effective, etc.		
	Brake Output	Default 24VDC brake output, configurable voltage 0VDC~input voltage, configurable brake duty cycle		
	Pulse Control	Pulse + direction, CCW + CW, A phase + B phase (5V-24V)		
	TTL232	Default baud rate 115200, maximum support 115200, can be connected with FULLING master station, can also use custom protocol to communicate with the controller		
	Protection Functions	Overvoltage protection, undervoltage protection, motor overheating (I ² T) protection, short circuit protection, driver overheating protection, etc.		
UART Baud Rate		115200bps (default value, can be modified)		
RS485	Baud Rate	115200bps (default value, can be modified)		
CAN Baud Rate		500Kbps (default value, can be modified)		

3.2 Installation of Servo Motor

During the installation of the servo motor, the following points should be noted:

Do not directly connect the servo motor to the industrial power supply, as it will damage the servo motor.

Storage Temperature and Humidity: The servo motor should be stored within a temperature range of -10°C to +70°C, with a relative humidity not exceeding 90%RH, without dew or condensation.

Servo Motor Oil and Water Protection: The servo motor can be used in places that may be affected by water or oil droplets, but it is not fully waterproof or oilproof. Therefore, the servo motor should not be placed or used in water or oil-soaked environments. If the servo motor is connected to a reduction gear, it should be sealed with oil when used to prevent oil from the reduction gear from entering the servo motor. The cables of the servo motor should not be immersed in oil or water; if necessary, use oil-resistant cables.

Servo Motor Oil and Water Protection: The servo motor can be used in places that may be affected by water or oil droplets, but it is not fully waterproof or oilproof. Therefore, the servo motor should not be placed or used in water or oil-soaked environments. If the servo motor is connected to a reduction gear, it should be sealed with oil when used to prevent oil from the reduction gear from entering the servo motor. The cables of the servo motor should not be immersed in oil or water; if necessary, use oil-resistant cables.

Servo Motor Allowable Shaft Load: Ensure that the radial and axial loads applied to the shaft of the servo motor during installation and operation are controlled within the specified values for each model. Be extra careful when installing a rigid coupling, as excessive bending load may cause damage or wear to the shaft end and bearings. It is best to use a flexible coupling to keep the radial load below the allowable value, which is designed for high mechanical strength servo motors.

Chapter 4: System Interface and Wiring

4.1 Names and Functions of Drive Parts

Figure 4-2 SVD4822RC-AA Names and Functions

4.1.1 Power Supply, Motor Cable, Braking Resistor Interface (CN7)

	Figure	Pin No.& Name	Description
	CN7	PIN1:DC+	Power supply positive
		PIN2:DC-	Power supply negative
		PIN1:U	Motor power U phase
	CN6	PIN2:V	Motor power U phase
SVD4812	CN9 1 2 3 4	PIN3:W	Motor power U phase
		PIN4:PE	Motor PE
		PIN1:RB+	Braking Resistor
		PIN2:RB-	
		PIN1:DC+	Power supply positive
SVD4822	CN6	PIN2:DC-	Power supply negative
		PN3:U	Motor power U phase
		PIN4:V	Motor power V phase
		PIN5:W	Motor power W phase

		PIN6:PE	Motor PE
	CN8	PIN1:RB+	Braking Resistor
		PIN2:RB-	
	CN6 SVD4835 1 2 3 4 5 6 7	PIN1:DC+/RB+	Power supply positive Braking Resistor positive
		PIN2:DC-	Power supply negative
SVD4835		PN3:RB-	Braking Resistor negative
		PIN4:U	Motor power U phase
		PIN5:V	Motor power V phase
		PIN6:W	Motor power W phase
		PIN7:PE	Motor PE

4.1.2 Brake Interface (CN5)

Figure	Pin No. & Name	Description
CN5	PIN1:BK-	Brake output negative
	PIN2:BK+	Brake output positive

4.1.3 Encoder Interface (CN4)

Figure 4-3 Encoder Interface Pin Definition

Interface	Pin. No. & Name	Description
	PIN13: A -	Encoder input A-
	PIN12: B -	Encoder input B -
	PIN11: Z -	Encoder input Z -
	PIN5: U -	Encoder input U -
	PIN15: V -	Encoder input V -
	PIN14: W -	Encoder input W -
CN4	PIN8: A +	Encoder input A +
ENCODER	PIN7: B +	Encoder input B +
	PIN6: Z +	Encoder input Z +
	PIN4: U +	Encoder input U +
	PIN10: V +	Encoder input V +
	PIN9: W +	Encoder input W +
	PIN1: 5V+	Encoder 5V output
	PIN2: GND	Encoder signal ground

Single-turn/Multi-turn Communication Encoder Interface Pin Definition

Interface	Pin. No. & Name	Description
	PIN1:ENC5V	Encoder 5V output
CN4	PIN2:GND	Encoder signal ground
ENCODER	PIN9:SD+	Data signal positive
	PIN14:SD-	Data signal negative

4.1.4 I/O Interface (CN3)

Figuro 4-4	IO Interface	Schamatic
Figure 4-4		Schematic

Interface	Pin. No. & Name	Description
	PIN1:COMO	Output common terminal
	PIN2:GND	Ground terminal
CN2	PIN3:AIN	Analog input termina
CINS	PIN4:DIR- Pulse input terminal	Pulse input terminal
	PIN5:DIR+	Input voltage: $3.3V{\sim}24V$
	PIN6:PUL-	Maximum input frequency: 500KHz

PIN7:PUL+	
PIN8:OUT2+	Output signal 2 positive, maximum output current: 50mA
PIN9:OUT1+	Output signal 1 positive, maximum output current: 50mA
PIN10:COMI	Input common terminal
PIN11:IN4	Digital input (DIN), in DIN mode, through the digital
PIN12:IN3	corresponding different states. (For specific details, please refer to the corresponding chapter content)
PIN13:IN2	High level: Input voltage 12VDC~30VDC, input current 4-20mA
PIN14:IN1	Low level: Input voltage 0VDC~5VDC, input frequency: <1KHz

Figure 4-5 I/O Interface Wiring Diagram

4.1.5 Status Indicator Light (LED)

Figure	Pin No.&Name	Description
LED		
LED O ALM O PWR	Motor fault and operation indicator light	Flashing red LED indicates an alarm on this machine, only green LED on indicates the system is running normally. Please refer to "Chapter 8 Alarms and Troubleshooting" for details.

4.1.6 Debugging Interface (CN2-UART)

Mainly used for UART communication, when using the master station, connect with the driver through this interface.

Figure	Pin No.&Name	Description
	PIN1:+5V	UART +5V output terminal
CN2	PIN2:GND	UART analog ground
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PIN3:RX	UART data receiving terminal
	PIN4:TX	UART data transmission terminal

4.1.7 Terminal Resistor Switch (S2)

Figure	Pin No.&Name	Description
S2		Terminal resistor matching selection (485)
	SW1	OFF: Disconnect 120Ω terminal resistor
		ON: Connect 120 Ω terminal resistor
		Terminal resistor matching selection (CAN)
1 2	SW2	OFF: Disconnect 120Ω terminal resistor
ON		ON: Connect 120Ω terminal resistor

4.1.8 Communication Bus Interface (CN1A)

Mainly used for CAN communication and RS485 communication.

Figure	Pin No.&Name	Description
	PIN1:CAN_H	CAN_H
CN1A(IN)	PIN2:CAN_L	CAN_L
	PIN3:CAN/485 GND	RS485/CAN Bus Common Ground
	PIN4:485-A	RS485_A
	PIN5:485-B	RS485_B
	PIN6-PIN8: Reserved	

4.1.9 Communication Bus Interface (CN1B)

Figure	Pin No.&Name	Description
CN1B(OUT)	PIN1:CAN_H	CAN_H
	PIN2:CAN_L	CAN_L
	PIN3:CAN/485 GND	RS485/CAN Bus Common Ground

PIN4:485-A	RS485_A
PIN5:485-B	RS485_B
PIN6-PIN8: Reserved	

4.1.10 Station No. DIP Switch (S1)

Figure	Pi	n No.&Name			Descr	iption			
			The station No. set by the dip switch applies to all communication methods.						
S1	SW1	N	SW4 OFF	SW3 OFF	SW2 OFF	SW1 OFF	Station No. Internal		
		1.When the station No. is	OFF OFF	OFF OFF	OFF ON	ON OFF	1 2		
	SW2		OFF	OFF	ON	ON	3		
		use internal	OFF OFF	ON ON	OFF OFF	OFF ON	4		
		storage to set	OFF	ON	ON	OFF	6		
	SW3	2.The state of	2.The state of	OFF	ON	ON	ON	7	
ON		this dip switch is	ON	OFF	OFF	OFF	8		
		only recognized	ON	OFF	OFF	ON	9		
		once at	ON	OFF	ON	OFF	10		
		power-on.	ON	OFF	ON	ON	11		
			ON	ON	OFF	OFF	12		
	SW4		ON	ON	OFF	ON	13		
			ON	ON	ON	OFF	14		
			ON	ON	ON	ON	15		

4.1.11 Logic Power Interface (CN8)

Figure	Pin No.&Name	Description			
CN8					
لصحم	PIN1:+	Logic power input terminal			
1 2	PIN2:-	Maximum input current: 1A			

4.2 External Wiring Diagram

Figure 4-6 External Wiring Diagram

Chapter 5: FULLING-tech Software User

Guide

Read before use (The software connects to PC through USB-UART convert cable)

1. Plugin Issues:

When some computers open the FULLINGTech software, the following window may appear.

This is because the computer is missing the plugin required for the software to run. Here, we click "Yes", and the page will automatically jump to download the plugin (requires an internet connection).

After downloading is completed, open the installation package, click "Install", and after the installation is complete, click "Close".

Then you can normally open the FULLINGTech software.

2. Basic Page Introduction:

After opening the software, the following page will pop up

Se Fulling Motor		- 🗆 X
Project Driver		
COM 177 Refres		
h h		
Baud 115200 UCOMID	Reboot SaveCtri SaveMot InitCtri Dirction No Error	
COM Setting	Save/Reboot Status	
Work Area	Parameter List ×	
- Driver	B-MP Parameter Group	
- Debugging	- 🔁 Default Group	
HQ IO Setting	Custom Group	
	Project Waard ×	
- Object Dictionary	New Project	
Scone		
- A Fault Managet		
- 🖑 Load Firmware		
	Open roject servo bLUC writer	
	Path:	
	Finish	
-		
Servo Firmware Ver: 🔵 No Error 💈	2 Connect State:0fl	

According to the driver used, select the corresponding series to enter the software. Here we choose the servo series.

After entering, the interface is divided into five areas:

1.Serial port settings: It is used for the connection between the computer and the driver.

2.Motor control: It is used for the management of motor-related parameters.

3.Status: It is used to display the status of the driver and the motor.

4.Work area: It is used for users select different objects in the work area for corresponding operations.

5.Popup window: After clicking on an object in the work area, the corresponding window will pop up. After logging into the software, the parameter list in the work area is shown by default.

k Area	Parameter List X		Save/Re	0001	Status				
Driver	E Parameter Group	1							
Debugging	😑 🎫 Default Group	N	Index	Туре	Name	Set Value	Current Value	Uint	
-HO Setting	Basic Operation	1	606100	Integer8	Operation_Mode_Buff			DEC	
Object Dictionary	Velocity Loop	2	604100	Unsigned16	Statusword			HEX	
Homing Definition	- Current Loop	3	606300	Integer32	Pos_Actual			inc	
- Scope	Motor Setting	4	606C00	Integer32	Speed_Real			rpm	
Transfer Settings	Din Spd/Pos Mode	5	607800	Integer16	1_q			Arms	
- 7 Load Firmware	Bulse Mode	6	60F709	Unsigned16	Real_DCBUS	***		v	
1	Others TRDO Canfin	7	260100	Unsigned16	Error_State			HEX	E.
4 RPDO Config	8	606000	Integer8	Operation_Mode			DEC	5	
	Custom Group	9	604000	Unsigned16	Controlword			HEX	
		10	607A00	Integer32	Target_Position			inc	
		11	608100	Unsigned32	Profile_Speed			rpm	
		12	608300	Unsigned 32	Profile_Acc			rps/s	
		13	608400	Unsigned 32	Profile_Dec			rps/s	
		14	60FF00	Integer32	Target_Speed			rpm	
		15	607100	Integer16	Target_Torque%			%	
		16	607300	Unsigned16	CMD_q_Max			Arms	
		17	608500	Unsigned 32	Quick_Stop_Dec			rps/s	
		18	300303	Unsigned8	Encoder_Data_Reset			HEX	

Figure 5-1 Software Basic Page

>>

Regarding the addition of new lines in the popup window:

All popup window have default parameters. If you need to add some parameters, you can right click in the blank area of the popup window, then click "Add", and the following page will appear.

In the search box, enter the parameter name -> click search -> click -> click "OK".

Search Search Num Index	3.Click to finish
Num Index Name ^ Num Index	
	Name ^
1 100000 Device_Type 1 606100	Operation_Mode_Buff
2 100100 Error_Register 2 604100	Statusword
3 100500 Sync_ID 3 606300	Pos_Actual
4 100600 ECAN_Sync_Period 4 606C00	Speed_Real
5 100800 Device_Name >> 5 607800	I_q Ack
6 100900 Product_Version 6 60F709	Real_DCBUS
7 100A00 Software_Version 7 260100	Error_State
8 100C00 Guard_Time << 8 606000	Operation_Mode Cancel
9 100D00 Life_Time_Factor 9 604000	Controlword
10 100E00 Node_Guarding_ID 10 607A00	Target_Position
11 101000 Group_Store 2. Add Parameter 11 608100	Profile_Speed
12 101001 Store_Loop_Data_301 12 608300	Profile_Acc
13 101002 Store_Loop_Data2 13 608400	Profile_Dec
14 101100 Group_Restore_Data 14 60FF00	Target_Speed
1E 101101 Postoro All Data 201 V 1E 607100	Target Targue%

Figure 5-2 Add Parameter

3. Use of the Object Dictionary

In the work area, you can find the "Object Dictionary". Click on "Object Dictionary" and the following popup window will appear.

Project Driver											
COM COM4 ~ 127	Refres	h O	pen 🔊			1 (5)					
Baud 115200 ~ COM I	5 0	1	S Reboot	SaveCtrl	E avold	ot InitCtrl	Dirction	No Fror			
			Reboor	savecur a	Javen	or miteur	Diretion	NOLITOI			
COM Se	tting			Sa	ave/Re	boot		Status			
Work Area	Obje	ect Dic	tionary × Pa	arameter Li	st						
Debugging	Index	Sub	Name		i i						💫 Search
-19 IO Setting	1000	00	Device_Type			Index	Sub		Name	Data Type	Attribute
- Parameter List	1001	00	Error_Register			1000	00		Device_Type	Unsigned32	R
- Object Dictionary	1005	00	Sync_ID	de d					- //		
	1006	00	ECAN_Sync_Per	lod		device na	ne				
- A Fault Managet	1008	00	Device_Name	_							
- Transfer Settings	1009	00	Foduct_Versio	n							
- cood finimate	100A	00	Guard Time	m							
	1000	00	Guard_Time								
	1000	00	Life_fime_facto	R ID							
	1002	00	Group Stars	1.10							
	1010	00	Store Loop Da	ta 201							
	1010	01	Store_Loop_Da	ta_301							
	1010	02	Store_Loop_Da	C02							
	1011	00	Bestern All Dat	_Data							
	1011	00	Restore_All_Da								
	1014	01	Consumer Hea	ss_ID ethoat							
	1017	00	Producer Hear	theat Ti							
	1018	00	Group ID	ibeat_n							
	1018	01	Vendor ID								
	1018	02	Product Code								
	1018	02	Product_Code	0.0							
	1018	04	Serial Number	32							
	1400	00	Group RV1 PD	0.04a							
	1400	01	PV1 ID	o_eig							
	1400	02	RX1 Transmissi	ion							
< >	1400	02		011	~						
1 m											

Figure 5-3 Object Dictionary Page

Through the search bar search, we can quickly find information related to parameters, such as index, data type, etc.

5.1 Connection between Driver and Software

5.1.1 Engineering File Management

Engineering files are used to save the configuration and parameter settings. By saving an engineering file, users can quickly load these settings in subsequent uses, avoiding repetitive settings, saving time and effort, and easily switching to different scenarios for experiments and tests in different working environments.

Specific usage method is as follows:

Open the master station and click on the "Engineering" in the upper left corner, and the following menu bar will appear.

"New/Open Engineering" is used to create a new engineering or open an existing engineering file .

-	-					
"Save	Engineering"	is used to save	e the current e	engineering a	as a .kpjt forr	nat file.

k Area 🕴	Parameter List 🗶								
Driver	Parameter Group								
Debugging Polyaging Polyaging Polyaging Polyaging Polyaging Polyameter Last Polyameter Last Polyameter Declamater Polyameter Declamater Polyameter Declamater Polyameter Declamater Polyameter Polyameter	Basic Operation	N	Index	Туре	Name	Set Value	Current Value	Uint	
	Position Loop	1	606100	Integer8	Operation_Mode_Buff			DEC	
	Velocity Loop	2	604100	Unsigned16	Statusword			HEX	
	Current Loop	3	606300	Integer32	Pos_Actual			inc	
	Analog Setting	4	606C00	Integer32	Speed_Real			rpm	
	Din Spd/Pos Mode	5	607800	Integer16	La			Arms	
	Pulse Mode Others del TPDO Config del RPDO Config Custom Group	6	60F709	Unsigned16	Real_DCBUS	laste (v	
		7	260100	Unsigned16	Error_State			HEX	
		8	606000	Integer8	Operation_Mode			DEC	
		9	604000	Unsigned16	Controlword			HEX	
		10	607A00	Integer32	Target_Position			inc	
		11	608100	Unsigned32	Profile_Speed			rpm	
		12	608300	Unsigned32	Profile_Acc			rps/s	
		13	608400	Unsigned32	Profile_Dec			rps/s	
		14	60FF00	Integer32	Target_Speed			rpm	
		15	607100	Integer16	Target_Torque%			96	
		16	607300	Unsigned16	CMD_q_Max			Arms	
		17	608500	Unsigned32	Quick_Stop_Dec			rps/s	
		18.	300303	Unsigned8	Encoder_Data_Reset			HEX	

5.1.2 Driver Connection

Click on the "Driver" in the upper left corner, and the following menu bar will appear

Project	Driver		
СОМ	COM4 ~ 127	Refresh	Open
Baud	115200 V COM ID	65	
	COM Settir	ng	

Select the corresponding port number, baud rate, and device ID, and click "Open". The device ID of any communication method is determined by the DIP switch, for details, please refer to "Chapter 4 System Interface and Wiring". (The driver's universal ID is 127, that is, any communication method can set the device ID to 127 to connect to the driver) Click on the parameter list -> basic parameters, when the actual current, status word, etc. appear values, then it indicates successful connection.

COM Sett	ing		Save/Reb	oot	Status				
rk Area 🕴	Parameter List ×								
Driver	Parameter Group			-					
Debugging Debugging	N	Index	туре	Name	Set Value	Current Value	nt		
	1	606100	integera	Operation_Mode_Buff		0			
	2	604100	Unsigned16	Statusword		231	x		
	3	606300	Integer32	Pos_Actual		1			
	4	0000000	integer32	speed_Real		0	n		
Transfer Settings	Din Spd/Pos Mode	5	607800	Integer16	Lq		0	115	
— [™] Load Firmware — [™] Pulse Mode — [®] Others — [®] TPDO Config	6	60F709	Unsigned16	Real_DCBUS		24			
	- STPDO Config	7	260100	Unsigned16	Error_State	***	0	×	
	RPDO Config	8	606000	Integer8	Operation_Mode		3	c	
	Custom Group	9	604000	Unsigned16	Controlword		6	×	
		10	607A00	Integer32	Target_Position		0		
		11	608100	Unsigned32	Profile_Speed		99.999	n	
		12	608300	Unsigned32	Profile_Acc		9.998	√s	
		13	608400	Unsigned 32	Profile_Dec		9.998	i/s	
		14	60FF00	Integer32	Target_Speed		0	n	
		15	607100	Integer16	Target_Torque%		0		
		16	607300	Unsigned16	CMD_q_Max		0.295	ms	
		17	608500	Unsigned32	Quick_Stop_Dec		499.997	v/s	
		18	300303	Unsigned8	Encoder_Data_Reset		0	×	

Figure 5-4 Basic Parameters

Note:

After setting the device ID and baudrate, you need to store the control parameters and restart the driver for them to take effect.

5.2 Motor Parameter and Control Parameter Management

5.2.1 Basic Motor Configuration

Motor configuration: through "Parameter List" -> "Motor Configuration"

After the driver is connected, you can manage motor parameters and control parameters through the following four buttons.

After completing the motor related parameter settings, click in sequence: SaveMot -> Reboot -> InitCtrl -> SaveCrtl

Note:

Motor initialization only needs to be done once, and unless there are special reasons such as changing the motor or driver, there is no need to configure it again.

5.2.2 Specific Operations for Driver Matching Motor:

(1) Communication type

For FULLING' communication encoder motor, you can enter "????" in the motor model, then click "SaveMot", and "Reboot" the driver, it will automatically read the motor type and parameters in the encoder.

(2) Incremental type

For incremental encoder motors or third-party motor. Please refer to "Appendix II: Configuring Third-Party Motors".

(3) Feedback Type

In the "Motor Configuration" section, there is a parameter called "Feedback Type." This should be filled out based on the type of encoder feedback signal. Different signal types can be referred to in the table below to enter the corresponding values.

Feedback Type Bit Encoder Signal	bit3: Communication Encoder	bit2: UVW TTL output	bit1: UVW wiring detection (Differential signal output by default)	bit0: ABZ wiring detection (Differential signal output by default)	Input value (HEX)
Differential	0	0	0		
Signal ABZ Without UVW	U	0	U	1	1
Differential					
singal ABZ	0	0	1	1	3
Differential	-	-			
singal UVW					
Differential					
singal ABZ	0	1	0	1	5
TTL signal	U		U		5
UVW					
Communication	1	0	0	0	0
encoder	I	U	U	U	0

5.2.3 Absolute Encoder Related Parameters

(1) Absolute encoder reset command

18	300303	Unsigned8	Encoder Data Reset	0	HFX
10	000000	onsignedo	Encoder_butu_neset	•	1123

0xBA: Reset fault

0x62: Clear multi-turn data

0xC2: Clear single-turn data

(2) ALMC (Encoder fault information)

- bit0: Speed exception
- bit2: Single-turn information calculation fault
- bit5: Multi-turn data loss
- bit6: Battery low-voltage fault
- bit7: Battery low-voltage warning

(3) Encoder data

23	300304	Integer32	AbsE_Counter	 0	DEC
24	300305	Integer32	AbsE_Multi	 0	DEC
25	300306	Integer32	AbsE_Position	 0	DEC

Absolute encoder position = (multi-turn data × feedback precision) + single-turn data

5.3 Simple Debugging

Simple debugging refers to the simple and easy-to-operate debugging functions provided in the master station software to help users quickly check the working status and performance of the equipment or system. This kind of debugging function usually does not require complex parameter settings or professional knowledge and is suitable for quick problem diagnosis and basic performance testing.

 \bigcirc

 \bigcirc

Simple debugging procedure is as follows:

Click on "Simple Debugging" in the work area, and the following page will pop up.

Project Driver	
COM COM4 127 Refresh Cose Baud 115200 COM ID COM ID Cose Reboot SaveCtrl SaveMot InitCtrl Dirtction No Error	
COM Setting Save/Reboot Status	
COM Setting Save/Reboot Work Area Parameter List Object Cloicomy 0000 Pos, Real Image: Cloicomy Object Cloicomy 0000 Parameter List 0000 Pos, Real Image: Cloicomy Object Cloicomy 0000 Parameter List 0000 Pos, Real Image: Cloicomy Opgee: 10 Postave Setting Postave Setting Opgee: 10 Postave Setting Postave Setting Postave Comparison 10 Postive Comparison 10 Postive Comparison 0 Negtive Comparison 0 Postive Postion Works 0 Postion Works 0	Position Jog Speed: 1000 rpm Remain Num Acce: 10 rpp/s 000 OrvOtt Run Times 100000 100000 (-2147483648, 2147483647) (-2147483648, 2147483647)
< >>	
Servo Firmware Ver:ASDB20240820 😁 No Error 🛛 🚨 Connect State:On	

Figure 5-6 Simple Debugging Page

This page is divided into three parts:

(1) **Jog**: In the speed jogging mode, users can set the target speed and acceleration of the device, which will smoothly accelerate and decelerate according to these settings, and continue to move after reaching the target speed until the stop command is sent or the device stops.

After setting the corresponding jogging speed, jogging acceleration, and jogging deceleration, click "on". When the "on" icon changes to , it indicates that the driver is enabled and the motor is locked. After the motor is locked, long press "Long press positive rotation" or "Long press reverse rotation" to make the motor rotate. We can also click "Full speed operation", check this option, and then click "Long press positive rotation" or "Long press reverse rotate.

(2) **Position jog**:Users can enter the target position coordinate information, and the device will move smoothly to the target position according to these coordinate information, set the speed and acceleration.

After setting the corresponding speed, acceleration, and deceleration, and then setting the corresponding position that the motor needs to rotate to, click "on". When the "on" icon changes to, it indicates that the driver is enabled and the motor is locked. Click to make the motor rotate; set the remaining number of runs and interval time after checking the automatic operation, and the motor will automatically move between the two positions.

(3) **Autorun(Drivier Planning)**: The automatic operation mode can choose not to control, position control, speed control, time control, and automatic position control. The concepts of speed control and position control are the same as the above speed jogging and position jogging, which will not be explained here. The following are explanations for time control and automatic position control.

Time control: You can set the positive and negative rotation times, and the motor will keep rotating positively and negatively.

As shown in the figure, through time control, set the positive rotation time to 2000ms, the negative rotation time to 2000ms, the running speed to 1000rpm, and the acceleration and

- Autorun(Driver Planni	ng)							
Auto Mode	No Ctrl \sim	50	Speed(rpm)					
Positive Comparison	0	10	Dece					
Negtive Comparison	0	10	Acce					
Halt Time Auto Position Works	1000	0	Run Count Auto Position Works					
	On/Off	Go/Stop						

Figure 5-7 Automatic Operation

Automatic position control: By setting the automatic operation positive comparison point and the automatic operation negative comparison point, the motor can run back and forth between these two positions, and set the pause time to set the time to stay at a certain position. (This mode is similar to checking the automatic operation in the point position mode)

Note:

If you need to switch modes or modify parameters, you need to click pause first, modify the parameters and mode after that, and then click continue.

Click "IO settings" in the work area to enter the digital input and digital output modules.

WOIK Allea	Distal	eter cisc orgitario ru	neuona -				pi-ind a				
Driver	Digital I	nput Evention	Cim	Beal	Lough	Internal	Digital C	Superior	£ los	Beal	Level
Debugging		Punction	Sim	Real	Lever	internal		Function	SIM	Real	Level
	DIN1	None	~	0	NO ~	0	OUT1	None ~		0	NO ~
Object Dictionary Object Dictionary	DIN2	None	~	0	NO ~	0	OUT2	None ~		0	NO ~
Scope	DIN3	None	~	0	NO ~	0	OUT3	None ~		0	NO ~
	DIN4	None	~	0	NO ~	0	OUT4	None ~		0	NO ~
	DIN5	None	~	0	NO ~	0	OUT5	None		0	NO ~
	DIN6	None	~	0	NO ~	0	OUT6	None ~		0	NO ~
	DIN7	None	~	0	NO ~	0	OUT7	~		0	
	DIN8	None	~	0	NO ~	0	OUT8	~		0	
< >>											

Figure 5-8 IO Port Settings

5.4.1 Input Mode

Function: Click	None		\sim	to sele	ect the f	unction.		
Simulation: Indicates the simulation power situation. Power-on is , power-								
is .								
Actual input: Ind	Actual input: Indicates the actual digital input situation.							
Electrical Level:								
(1) Normally op	en mode -	High level is co	ndu	ictive, lo	w level	is not cor	nductive.	
(2) Normally clo	sed mode	- High level is n	ot o	conductiv	ve, low	level is co	onductive.	
Effective input: The digital logic 0 is \bigcirc , the digital logic 1 is \bigcirc , and it is jointly						, and it is jointly		
determined by th	determined by the simulation (or actual input) and the level property.							
Input example:								
	Function			Sim	Real	Level	Internal	
DIN1	Enable		\sim		\bigcirc	NO ×		

At this time, it indicates that DIN1 is set as the driver enable function, and it also indicates that the driver is enabled.

Function name	Description
Emergency stop	Used to stop the system in emergency situations.
Driver onable	Used to enable the driver. If IO port is used for enabling, then the
	status word cannot be written.

Table 5-1 Input Function Module List and Description

	1: Write 0x2F to 604000				
	0: Write 0x06 to 604000				
Alarm reset	Used to clear alarm				
	Used to determine if the entire system is ready.				
Pre-enable	1: The driver can be enabled.				
	0: The driver cannot be enabled.				
Kvi close	Close the integral gain in speed loop.				
Positive limit	Llood for position limit				
Negative limit					
Negative limit	Home switch signal, can only be used to find the home position				
Speed command	In speed and torque modes, the speed command can be reversed				
Multi speed					
control 0					
Multi apood	Used for Din speed mode under Din speed index				
control 1					
Multi-speed					
control 2					
External input fault	External input fault, such as: external temperature control switch, when the temperature exceeds the limit, the input IO signal causes the driver to stop				
Homing	Used for searching the home signal				
Multi-position	In the DIN position mode, used to select the multi-position through				
Multi-position	BCD code combination, such as multi-position control 2,				
control 1	multi-position control 1, and multi-position control 0 are 011, which				
Multi-position	means selecting the multi-position 3. (All multi-positions represent				
control 2	absolute positions)				
Electronic gear					
selection 0	In the DIN position mode, used to select the electronic gear through				
Electronic gear	BCD code combination, such as electronic gear selection 2,				
selection 1	electronic gear selection 1, and electronic gear selection 0 are 001,				
Electronic gear	which means selecting the electronic gear 1				
selection 2					

Note: When using multi-position, the multi-speed should be given a value. Multi-speed 0 indicates the speed from the current position to the multi-position control 0.

	Iging	Dig	ital IO Functio	ns				
Parameter Group								
Default Group	N	Index	Туре	Name	Set Value	Current Value	Uint	
Basic Operation	1	608300	Unsigned32	Profile_Acc		9.998	rps/s	
Velocity Loop	2	608400	Unsigned32	Profile_Dec		9.998	rps/s	
📲 Current Loop	3	202009	Integer32	Din_Speed0		0	rpm	
- 🛍 Motor Setting	4	20200A	Integer32	Din Speed1		0	rpm	
- Space Analog Setting	5	20200B	Integer32	Din Speed2		0	rpm	
- 1 Pulse Mode	6	20200C	Integer32	Din Speed3		0	rpm	
- 💼 Others	7	20200D	Integer32	Din Speed4		0	rpm	
TPDO Config	8	20200E	Integer32	Din Speed5		0	rpm	
->> Custom Group	9	20200F	Integer32	Din Speed6		0	rpm	
	10	202010	Integer32	Din Speed7		0	rpm	
	11	202001	Integer32	Din Pos0		0	DEC	
	12	202002	Integer32	Din Pos1		0	DEC	
	13	202003	Integer32	Din Pos2		0	DEC	
	14	202004	Integer32	Din Pos3		0	DEC	
	15	202005	Integer32	Din Pos4		0	DEC	
	16	202006	Integer32	Din Pos5		0	DEC	
	17	202007	Integer32	Din Pos6		0	DEC	
	18	202008	Integer32	Din Pos7		0	DEC	

Figure 5-9 Multi-speed control

5.4.2 Output Mode

Function: Click	None ~	to select the function.
Simulation:	ndicates the simulation power	-on situation. Power-on is 🔲, power-off is

Actual output: Indicates the actual digital output situation.

Electrical Level: (1) Normally open mode - High level is conductive, low level is disconnected.

(2) Normally closed mode - High level is disconnected, low level is conductive.

Effective output: Jointly determined by the simulation (or actual output) and electrical level

property. Indicates the digital logic 0 is \bigcirc , the digital logic 1 is \bigcirc .

Function name	Description			
Driver ready	The driver is ready and can be enabled			
Driver alarm	The driver has an error			
Motor position reached	The position is less than the position reach window			
Motor zero speed	The speed is less than the speed reach window			
Motor brake effective	Indicates that the brake is effective			
Motor speed reached	The motor has reached the speed			
Index signal appears	The index signal appears			
Speed limit reach	In the torque mode, the actual speed reaches the maximum speed limit			

Table 5-2 Output Function Module List and Description

Motor locked axis	The driver is enabled, and the motor is locked
Position limit	Position limit switch has been triggered
Home found	In the home mode, the home position has been found
Target torque reached	The target torque has been reached

5.5 Trigger-based Oscilloscope

A trigger-based oscilloscope is a special type of oscilloscope used to capture and display specific events or signals in a waveform diagram. It controls the timing of the oscilloscope's data acquisition through a trigger signal to ensure that the waveform is only displayed under specific conditions, making it easier to observe and analyze.

Click on "Oscilloscope" in the work area to pop up the following page.

Scope ×	-
Cursor Scope Control	Sampling Setting
X1 X2 Y1 Y2 CH1 Start Reread Export Import Copy	Sample Time 62.50us 1
	Trig Offset 100 Samples 500
	Trig Source Null V
	Trig Level 0 Unit ~
	Trig Level Falling V Comparison Signer V
	CH1 Object Scale
	Statusword V > 1e0
	Value Unit Hide Y Offset
	HEX 🗸 🗌 0 🚔
	CUD
	Object Scale
	✓ <u>I_q</u>
	Value Unit Hide Y Offset
	Arms V 0
	··· CH3 Object Ceale
	Pos Actual V > 1e0
	Value Unit Hide Y Offset
	inc v 0
	CIM
	Object Scale
	□ <u>I_q</u> > <u>1e0</u> -
	··· Value Unit Hide Y Offset
	Arms ~ 0 🗘

Figure 5-10 Oscilloscope Page

Below are some explanations of the oscilloscope-related parameters:

Sampling period: The period for collecting data, set to 1 indicates that data is collected every 62.5us.

Number of acquisitions: Indicates the total number of data collected in this sampling, set to 500 indicates that 500 pieces of data are collected.

Pre-trigger data points: The number of samples taken before the trigger source is triggered, set to 100 indicates that 100 samples are taken before the trigger.

Trigger source and trigger level: You can set when to start sampling through this setting, and the condition is set by yourself.

Trigger edge: Click to change to rising edge trigger, falling edge trigger, or edge trigger.

Object: The sum of the data lengths of the four objects being sampled at the same time is a maximum of 64 bits, for example, 2 32-bit objects, or 4 16-bit objects.

Cursor: By clicking the button, you can select the corresponding cursor, which will be displayed on the oscilloscope and select the channel you need to observe on the right side of the cursor.

Copy: Copy the sampled data to the clipboard.

Export: Export the sampled data to a .scope file.

Import: Import the .scope file and display the waveform.

Re-read data: Read out and display the waveform of the recently collected data from the driver.

If the required parameters are not in the default object list of the channel, you can click

to jump to the "Object Dictionary", enter the parameter name in the search box, and then double-click to add the parameter.

Figure 5-11 Adding Parameters

Below is an example of using the oscilloscope to read the actual position and actual current:

(1) First, set the working mode to "3" mode, and then set the contour acceleration and contour deceleration to 10, and set the target speed to 500. (This step is to have obvious parameters that can be read)

Parameter List × Scope									
🖃 🔄 Parameter Group								target speed for profile	
🖃 🐸 Default Group	N	Index	Туре	Name	Set Value	Current Value	Uint		velocity mode
- Basic Operation	1	606100	Integer8	Operation_Mode_Buff		3	DEC		
Velocity Loop	2	604100	Unsigned16	Statusword		237	HEX		
- 🕄 Current Loop	3	606300	Integer32	Pos_Actual		2898335	inc		
- Motor Setting	4	606C00	Integer32	Speed_Real		490.121	rpm		
Analog Setting Dip Spd/Res Mode	5	607800	Integer16	Lq		-0.015	Arms		
- 🕼 Pulse Mode	6	60F709	Unsigned16	Real_DCBUS		23	v		
- 💼 Others	7	260100	Unsigned16	Error_State		0	HEX		
- BPDO Config	8	606000	Integer8	Operation_Mode		3	DEC		
-> Custom Group	9	604000	Unsigned16	Controlword	f	f	HEX		
	10	607A00	Integer32	Target_Position		0	inc	1	
	11	608100	Unsigned32	Profile_Speed		99.999	rpm		
	12	608300	Unsigned32	Profile_Acc		9.998	rps/s		
	13	608400	Unsigned32	Profile_Dec		9.998	rps/s		
	14	60FF00	Integer32	Target_Speed	500	499.999	rpm		
	15	607100	Integer16	Target_Torque%		0	%		
	16	607300	Unsigned16	CMD_q_Max		0.295	Arms		
	17	608500	Unsigned32	Quick_Stop_Dec		499.997	rps/s		
	18	300303	Unsigned8	Encoder_Data_Reset		0	HEX		

Figure 5-12 Modify Parameters

(2) Open the oscilloscope and follow these steps:

First step: On the right CH1, set the object to the actual position.

Second step: Set the trigger source to NULL, that is, click "Start Acquisition" to start collecting data immediately.

Third step: Click "Start Acquisition" and wait for the progress bar to complete, which means the collection is successful.

Fourth step: Switch the "actual position" in the first step to "actual current" and click "Start Acquisition" again to switch the image from the actual position image to the actual current image.

Note:

If you want to set the sampling trigger conditions, such as setting the trigger condition to when the effective target speed reaches 500rpm, you need to confirm with "Enter" on the keyboard just like modifying the control word.

Every time you switch an object or channel, you need to click "Start Acquisition" once.

We can zoom in on the image through the "scale" on the right side;

In addition, you can also zoom in on the waveform by pressing the middle mouse button for a long time.

Move the image up and down through "Y-axis offset";

Click "X1" and "Y1" near the cursor, and two vertical lines perpendicular to the X-axis and Y-axis will appear on the screen, and the coordinates of the intersection point of the two lines will be displayed in the upper right corner of the image. X2 and Y2 are used in the same way. dX and dY represent the difference between X1 and X2, Y1 and Y2.

Cursor Cursor Conserved Conser	Scope Control Start Reread Export Import Copy	Sampling Setting Sampler Time 62.50us 1 Trig Offset 100 Samples 500 Trig Source Null V > Trig Level 0 Unit V Trig Level Falling Comparison Signer V
Losd Firmware Set trig and other Set samp Start co 4. Measure 	ger source, sampling interval, quantity, settings ling object llecting, importing and exporting data the collection results	CH Object Statussord N = 100 is Value Unit Hide VOffset Value Unit Hide VOffset

Figure 5-13 Steps to Read the Actual Position

The above lists the steps to read the actual position, and the method to read parameters such as actual speed is basically the same.

The above lists the steps to read the actual position, and the method to read parameters such as actual speed is basically the same.

Click "Export" to generate a .wave file **example** at the specified path (customized),

Figure 5-14 The waveform after importing the test.wave file

In addition, we can also click "Copy" to copy the data to the Excle table.

5.6 Historical Errors and Alarm

When the icon of the master station changes to \bigcirc_{error} , it indicates that a fault has occurred.

COM Set	ting		Save/Re	boot	Status				
ork Area Parameter List × Sco	Parameter List × Scope		Error Ma	nagement				Controlwo	rd
Driver Debugging Default Group	🖨 🐸 Default Group	N	Index	Туре	Name	Set Value	Current Value	Uint bit0: Swite	h on
HQ IO Setting	Basic Operation	Basic Operation	606100	Integer8	Operation_Mode_Buff	444 ()	0	DEC bit1: Enabl	e voltage stop
Parameter List	- Velocity Loop	2	604100	Unsigned16	Statusword		238	HEX bit3: Enabl	e operatio
G Homing Definition	- 😢 Current Loop	3	606300	Integer32	Pos_Actual	***	-20	inc bit4: Set-p	oint(1mod
Scope	Motor Setting	4	606C00	Integer32	Speed_Real	***	0	rpm (6mode),	Enable ip n
Transfer Settings	Din Spd/Pos Mode	5	607800	Integer16	La	***	-0.062	Arms (7mode) bit5: Chan	no set
- Load Firmware	- 😢 Pulse Mode	6	60F709	Unsigned16	Real_DCBUS	***	23	V immediate	ly(1mode)
	- Config 8	7	260100	Unsigned16	Error_State	***	4000	HEX bit6: 0:rela (1mode)	ted 1:abs
		8	606000	000 Integer8 Operation_Mode 3 DEC	DEC bit7: Fault	bit7: Fault reset			
	Custom Group	Custom Group 9 604000 Unsigned16 Controlword 10 607A00 Integer32 Target_Position	604000	Unsigned16	Controlword		6	HEX bit8: Halt	bit8: Halt bit9/bit10: Reserved
			Target_Position		0	bit1~bit1	5: Manufa		
		11	608100	Unsigned32	Profile_Speed		99.999	rpm specific	
		12	608300	Unsigned32	Profile_Acc		9.998	rps/s	
		13	608400	Unsigned32	Profile_Dec		9.998	rps/s	
		14	60FF00	Integer32	Target_Speed		0	rpm	
		15	607100	Integer16	Target_Torque%		0	96	
		16	607300	Unsigned16	CMD_q_Max		0.295	Arms	
		17	608500	Unsigned32	Quick_Stop_Dec		499.997	rps/s	
		18	300303	Unsigned8	Encoder_Data_Reset		0	HEX	

Figure 5-15 Fault Example

Click directly to jump to fault management, or click on fault management in the work area.

The fault management page is as follows:

k Area	Parameter List	Error Management	×					
Driver	N Code	Error Name	Resettable?	Error1	Error2			
Debugging	1 7122	Motor Excitation Alarm / C	Yes	0x4000	0x0000			
Parameter List	2						Reset	
Object Dictionary	3							
Homing Definition	5							
Fault Managet	6							
Transfer Settings	7						-	
Coad Firmware	<							
	Diagnosis Er	rror History Code			1			
	/ 0.00						1	
	Error Cause						_	
	Motor UVW pha	se sequence is incorrect.						
		onneccedi						
	Solution	and Mahara motor wine					_	
	2.Check if the en	coder connection is loose.						
						~		

Figure 5-16 Fault Management

Through the master station page, we can directly obtain the cause of the fault and the solution. In addition, by clicking on the historical fault, you can query the last 8 error messages, including fault code, bus voltage, speed, current, temperature, working mode, time, and PWM status. The first line is the latest error information, and so on. The following is a common error code table. If the problem cannot be solved, please refer to Chapter 8 Alarm Elimination for solutions.

Error code	Error name	Error description
0x1001	MCU internal error	Detected MCU model error
0x2214	Software overcurrent	Software overcurrent
0x2320	Overcurrent alarm	The driver power tube or motor is short-circuited
0x3130	Motor phase missing	One phase of the motor power lines UVW is not connected
0x3210	Over voltage alarm	The bus voltage is too high
0x3220	Low voltage alarm	The bus voltage is too low
0x4210	Temperature alarm	The radiator temperature is too high
0v4210	Motor temperature	Motor temperature sensor alarm
084310	too high	
0v5112	Logic low voltage	Logic power supply voltage is too low
0,3112	alarm	
0x5210	Current sensor	Current sensor signal offset or excessive ripple
0x5441	Negative limit error	Negative limit error only occurs when the limit
0,0441		function is defined as 1
0x5442	Positive limit error	Positive limit error only occurs when the limit
070442		function is defined as 1
	Pre-enable error	When the pre-enable input is defined, there is no
0x5443		valid input on the pre-enable input port when the
		driver is enabled or about to be enabled
0x5530	EEProm alarm,	Eeprom data verification error
0x6320	Motor configuration	There is no motor configuration information in the

Table 5-3 Error Code Table

	error	EEPROM/motor has never been configured
0.7110	Absorption resistor	Braking resistor overload
087110	alarm	
0v7122	Motor excitation alarm	The motor UVW phase sequence is incorrect or the
087122		encoder is not connected
0x7305	Encoder count alarm	The encoder is disturbed
0v7306	Main encoder count	Main encoder count error
0.7300	error	
0x7310	Speed deviation	The set speed deviates too much from the actual
0,7010	alarm	speed
0x7382	Main encoder	Main encoder connection error
	connection error	
0x7500	Bus offline erro	Abnormal bus communication
0x8611	Position error alarm	The actual following error exceeds the set
		maximum following error
0x8613	Home finding error	Problems or failures when performing home search
		or zeroing operations
	Fully closed-loop	In the all closed-loop working state, the main
0x8A81	encoder counting	encoder count direction is opposite to the motor
	direction error	encoder count direction
0xFF10	User lit fault	Motor or driver power tube IIt fault
0xFF21	Reserved	
0xFF22	Pulse frequency too	Pulse input frequency is too high
0/11/22	high	
0xEE30	Encoder ABZ	Encoder ABZ connection error or not connected
	connection alarm	
	Encoder UVW	Encoder UVW connection error or not connected
	connection alarm	
0xFF41	Reserved	
0xFF42	Reserved	

5.7 Driver Parameter Reading and Writing

Through driver parameter reading and writing, you can save the driver configuration in the master station or controller, which is convenient for subsequent device restoration and configuration. This is especially useful when replacing or maintaining equipment, as it allows you to quickly apply previous configurations to new equipment, saving debugging time and cost.

5.7.1 Read Setting

Click on "Transfer Setting" in the work area -> "Read Setting" -> "Open List" (select a file with a .oparam suffix) -> "Read" -> "Save to File".

1	ite Setting Read	d Setting	1					
			_					
	Open List	C:\Us	ers\Adminis	strator\Desktop\yy\读参数文件\/	ASDB.oparam			
		N	Index	Value	Result	Name	^	
י	Read	11	14010208			RX2_Transmission		
		12	14010310			RX2_Inhibit_Time		
		13	14020120			RX3_ID		
	Save to File	14	14020208			RX3_Transmission		
		15	14020310			RX3_Inhibit_Time		
		16	14030120			RX4_ID		
		17	14030208			RX4_Transmission		
		18	14030310			RX4_Inhibit_Time		
		19	16000008			Group_RX1_PDO		
		20	16000120			RX1_PDO1		
		21	16000220			RX1_PDO2		
		22	16000320			RX1_PDO3		
		23	16000420			RX1_PDO4		
		24	16000520			RX1_PDO5		
		25	16000620			RX1_PDO6		
		26	16000720			RX1_PDO7		
		27	16000820			RX1_PDO8		
		28	16010008			Group_RX2_PDO	_	
		29	16010120			RX2_PDO1		
		30	16010220			RX2_PDO2		
		31	16010320			RX2_PDO3		
		22	16010420			BX3 0004	~	

Figure 5-17 Read Driver Configuration

5.7.2 Write Driver Configuration

Click on "Transfer Setting" in the work area -> "Write Setting" -> "Open File" (select a file with a .iparam suffix) -> "Write" -> "Save in EEPROM"

Work Area	P	arameter List	Trar	sfer Setting	×							
E- Driver	/Wi	rite Setting Read	Setting									
Debugging	F		1									
- Parameter List		Open File	C:\Us	ers\Adminis	strator\Desktop\y	小空心杯伺服驱动器.	iparam					
- Object Dictionary	N	Index	Source Value	Check Value	Result	Name	^					
Homing Definition	Homing Definition Scope Fault Managet Transfer settings	1	100C0010	1000			Guard Time	1				
Scope		Write	2	100D0008	3			Life Time Factor				
Transfer Settings		3	100E0020	1793			Node Guarding ID					
- Coad Firmware		Save in	-	10140020	129			Emergency Mess ID				
	EEPROM	EEPROW	5	10160120	8323072			Consumer Heartheat				
			6	10170010	0			Producer Heartbeat Ti				
		6 7 8 9 1(7	14000120	512			PY1 ID				
			/	· · · · · · · · · · · · · · · · · · ·	6	14000120	254			RAT_ID RV1 Transmission		
			0	14000200	204			DV1 Jabibit Time				
			10	14000310	760			RKT_INNDIT_TIME				
					10	14010120	769			NA2_ID		
			12	14010208	254			RA2_Transmission				
				12	14010310	10			RA2_Innibit_Time			
			13	14020120	1025			KX3_ID				
			14	14020208	254			RX3_Transmission				
			15	14020310	10			RX3_Inhibit_Time				
			16	14030120	1281			RX4_ID				
			17	14030208	254			RX4_Transmission				
			18	14030310	10			RX4_Inhibit_Time				
			19	16000008	0			Group_RX1_PDO				
			20	16000120	0			RX1_PDO1				
			21	16000220	0		-	RX1_PDO2				
			22	16000220	0		1	RV1 00/02	-			
< >												

Figure 5-18 Write Driver Configuration

5.8 Load Firmware

If for some special reasons, you need to re-flash the firmware, you can follow these steps: Click on "Load Firmware" \rightarrow select the file \rightarrow click on "Download"

Work Area	
	Download 0%

Figure 5-19 Firmware Download

Chapter 6: Operation Mode Introduction

6.1 Speed Mode Introduction

The speed mode is include immediate speed mode (-3) and speed mode with acceleration (3). The speed in the speed mode can be set by internal commands, external IO ports (DIN speed mode), and three types of analog inputs.

6.1.1 Internal Commands Setting Speed (3)

Index	Data Type	Name	Description	Setting Value
606000	Integer8	Operation_mode	Used to set the motor operation mode 3 :Speed mode with acceleration	3
604000	Unsigned16	Controlword	Used to set the motor state F (Motor shaft lock) 6 (Motor shaft release)	F or 6
60FF00	Integer32	Target_speed	The preset speed value set by the user	Set by the user
608300	Unsigned32	Profile_acc	The acceleration set in the speed mode with acceleration (3)	Set by the user
608400	Unsigned32	Profile_dec	The deceleration set in the speed mode with acceleration (3)	Set by the user

Table 6-1 Speed Mode Related Parameters

Note:

After entering the data, press the "Enter" key, and then check whether the current value has been modified.

Parameter List ×									
Parameter Group		_					_		Controlword
🖻 🍋 Default Group	Ν	Index	Туре	Name	Set Value	Current Value	Uint		bit0: Switch on bit1: Enable voltage
Basic Operation Position Loop Velocity Loop	1	606100	Integer8	Operation_Mode_Buff		0	DEC		bit2: Quick stop
	2	604100	Unsigned16	Statusword		238	HEX		bit3: Enable operation
- Current Loop	3	606300	Integer32	Pos_Actual		0	inc		Homing operation start
Motor Setting	4	606C00	Integer32	Speed_Real		0	rpm		(6mode), Enable ip mod
Din Spd/Pos Mode	5	607800	Integer16	Lg.		0	Arms		(7mode) hit5: Change cet
- Pulse Mode	6	60F709	Unsigned16	Real_DCBUS		25	v		immediately(1mode)
- Contract of the contract of	7	260100	Unsigned16	Error_State		4000	HEX		bit6: 0:related 1:abs
- BPDO Config	8	606000	Integer8	Operation_Mode		3	DEC	1	bit7: Fault reset
-> Custom Group	9	604000	Unsigned16	Controlword		6	HEX	1	bit8: Halt
	10	607A00	Integer32	Target_Position		0	inc	T	bit9/bit10: Reserved bit11~bit15: Manufacture
	11	608100	Unsigned32	Profile_Speed		99.999	rpm		specific
	12	608300	Unsigned32	Profile_Acc		9.998	rps/s		
	13	608400	Unsigned32	Profile_Dec		9.998	rps/s		
	14	60FF00	Integer32	Target_Speed		0	rpm		
	15	607100	Integer16	Target_Torque%		0	96	1	
	16	607300	Unsigned16	CMD_q_Max		0.295	Arms		
	17	608500	Unsigned32	Quick_Stop_Dec		499.997	rps/s		
	18	300303	Unsigned8	Encoder Data Reset		0	HEX		

Figure 6-1 FULLING software Modify Speed

6.1.2 Internal Commands Setting Speed (-3)

Index	Data Type	Name	Description	Setting Value
			Used to set the motor	
606000	Integer8	Operation_mode	operation mode	3
			-3: Immediate speed mode	
	Uncignod1		Used to set the motor state	
604000	c	Controlword	F (Motor shaft lock)	F or 6
	0		6 (Motor shaft release)	
605500	Intogor 22	Target speed	The preset speed value set	Set by the
	integer52	laiget_speed	by the user	user

Table 6-2 Immediate Speed Mode Related Parameters

6.1.3 Setting Speed with External IO Ports (DIN Speed Mode)

Index	Data Type	Name	Description	Setting Value	Unit
202009	Integer32	Din_speed0	Controlled by the Din Vel index 2,		
20200A	Integer32	Din_speed1	Din Vel index 1, and Din Vel index		
20200B	Integer32	Din_speed2	0 set by the DIN port.		
20200C	Integer32	Din_speed3	If the digital logic input of	Set by the	rom
20200D	Integer32	Din_speed4	control 2, 1, and 0 is 010, it means to	user	τριτι
20200E	Integer32	Din_speed5	use multi-speed control 2; if the		
20200F	Integer32	Din_speed6	input is 110, it means to use		
202010	Integer32	Din_speed7	multi-speed control 6.		
608300	Unsigned32	Profile_Acc	The acceleration set in the speed mode with acceleration (3)	Set by the	
608400	Unsigned32	Profile_Dec	The deceleration set in the speed mode with acceleration (3)	user	rps/s
606000	Integer8	Operation_mode	Used to set the	3	DEC

Table 6-3 DIN Speed Mode Setting

			motor operation		
			mode		
			3 (Speed mode		
			with acceleration)		
			Used to set the		
604000	Unsigned16	Controlword	motor state	6->2F	HEX
			6->2F Enable		

If you use FULLING software for debugging, you can follow these steps:

(1) Work area "Parameter List" → "Din Spd/Pos Mode" → Set the corresponding values

Work Area 4	Parameter List × Digital	IO Fur	nctions							
🖃 📂 Driver	🕀 🍋 Parameter Group									Din_Speed[x], HELP: please
Debugging	😑 🍋 Default Group	Ν	Index	Туре	Name	Set Value	Current Value	Uint		refer to "Din_Speed0
- 10 Setting	Basic Operation	1	608300	Unsigned 32	Profile_Acc		9.998	rps/s		(2020.03)
Object Dictionary	Velocity Loop	2	608400	Unsigned32	Profile_Dec		9.998	rps/s		
- 🕀 Homing Definition	- Current Loop	3	202009	Integer32	Din_Speed0	100	99.999	rpm]	
	- 🛍 Motor Setting	4	20200A	Integer32	Din Speed1	200	199,999	rpm		
- A Fault Managet	Analog Setting	5	20200B	Integer32	Din Speed2	300	299,999	rpm		
- Transfer Settings	Din Spa/Pos Mode	6	202000	Integer32	Din Speed3	400	399,999	rom		
	- Contract Others	7	202000	Integer32	Din Speed4	500	400 000	rom		
	- 11 TPDO Config		202000	Integer52	Dia Speedf	600	500.000	ipin .		
	RPDO Config	0	202002	integersz	Din_speeds	700	233'333	rpm		
	Custom Group	9	20200F	integer32	Din_speedo	700	099.999	rpm		
		10	202010	Integer32	Din_Speed7	008	799.999	rpm		
		11	202001	Integer32	Din_Pos0		0	DEC	-	
		12	202002	Integer32	Din_Pos1		0	DEC		
		13	202003	Integer32	Din_Pos2		0	DEC		
		14	202004	Integer32	Din_Pos3		0	DEC		
		15	202005	Integer32	Din_Pos4		0	DEC		
		16	202006	Integer32	Din_Pos5		0	DEC		
		17	202007	Integer32	Din_Pos6		0	DEC		
		18	202008	Integer32	Din Pos7		0	DEC		
				-	-					
`````										L

#### Figure 6-2 Multi-speed parameter settings

(2) Click on "IO Settings" -> Select the DIN port and set it to Din Vel

Work Area	Param	eter List Digital IO Fu	nctions ×									•
🖃 🚞 Driver	Digital I	nput					Digital Ou	utput				
- Debugging		Function	Sim	Real	Level	Internal		Function	S	im	Real	Level
- 10 Setting - IO Setting Parameter List	DIN1	Din Vel Index0	× 🔳	0	NO ~	0	OUT1	None ~	- 1		0	NO ~
- Object Dictionary	DIN2	Din Vel Index1	~	0	NO ~	0	OUT2	None ~	/		0	NO ~
	DIN3	Din Vel Index2	× 🔳	0	NO ~	0	OUT3	None	/		0	NO ~
	DIN4	None	~	0	NO ~	0	OUT4	None	/	$\Box$	0	NO ~
	DIN5	None	~	0	NO ~	0	OUT5	None	/	Γ	0	NO ~
	DIN6	None	~	0	NO ~	0	OUT6	None	/		0	NO ~
	DIN7	None	~	0	NO ~	0	OUT7				0	~ ~
	DIN8	None	~	0	NO ~	0	OUT8	~			0	~
< >>												

Figure 6-3 IO port settings

(3)Enter the "Basic Parameters" and set the operation mode to 3 and the control word to F, so we can control different speeds through the input of the IO port.

For example, set DIN1 to multi-speed control 0, DIN2 to multi-speed control 1, and DIN3 to multi-speed control 2. Assuming the input for DIN3-DIN2-DIN1 is 110, the motor will rotate at a speed of 700rpm (multi-speed control 6). Note:



If you use the IO port to set the speed, then the input of the speed through other modes will be invalid.

## 6.1.4 Setting Speed with Analog Input

Table 6-4 Analog input setting speed related parameters

Index	Data Type	Name	Description	Setting Value	Unit
250106	Unsigned16	ADC_AI	Analog signal 1 original ADC data	Read Only	DEC
250206	Integer16	Ain_out	Analog Input signal1 (AIN1) input voltage after filter, deadband and offset	Read Only	V
250201	Integer16	Ain_Correction_ Gain	Analog input correction gain	User-de fined	DEC
250202	Integer16	Ain_Correction_ Offset	Analog input correction offset	User-de fined	DEC
250203	Unsigned8	Ain_Filter	Analog input signal 1 (AIN1) filter		DEC
250204	Integer16	Ain_Offset	Analog input signal 1 (AIN1) offset	User-de fined	V
250205	Integer16	Ain_Dead	Analog input signal 1 (AIN1) deadband		V
250207	Unsigned8	Ain_Speed_con	analog signal control speed, valid at operation mode 3 or -3 0: Invalid 1: Ain Control Speed 2: Ain Control Position	1	DEC
25020A	Integer32	Analog_speed_ factor	Proportion factor for converting the analog input signal to motor speed	User-de fined	rpm/v
606000	Integer8	Operation_mode	Used to set the motor operation mode 3 (Speed mode with acceleration) -3 (Immediate speed mode)	3 or -3	DEC
604000	Unsigned16	Controlword	Used to set the motor state F (Motor shaft lock) 6 (Motor shaft release)	F or 6	HEX

Assuming the input analog signal is Vin, after data processing, it is obtained as Vin_r, then



we have:

Vin_r= Vin - Analog input offset voltage

If the absolute value of Vin_r is greater than the dead zone (i.e.,  $|Vin_r| > dead zone$ ), then the analog input effective data is: Analog input effective data =  $|Vin_r|$  - dead zone Otherwise, the analog input effective data is 0.

Current speed = Analog input effective data * Analog-speed factor

If you use FULLING software for operation, you can follow these steps: Connect an analog voltage between GND and AIN on CN3

After AMPS software is connected, click on "Parameter List" -> "Analog Quantity Parameters" to enter the following page.

	Darameter Group	_							The maximum voltage
E- Driver	Parameter Group		Index	Time	Mama	CatMahua	Current Value	Lint	the analog input for
P IO Setting	Basic Operation	IN .	index	type	Name	set value	Current value	OINC	position calculation.
- Parameter List	- B Position Loop	1	250106	Unsigned16	ADC_AI		1642	DEC	
	- 🕄 Velocity Loop	2	250206	Integer16	Ain_out		1.314	/	
Homing Definition	- Current Loop	3	250201	Integer16	Ain_Correction_Gain		9010	DEC	
- 🔀 Scope	Motor Setting	4	250202	Integer16	Ain_Correction_Offset		7548	DEC	
-A Fault Managet	Analog Setting	5	250203	Unsigned8	Ain Filter		5	DEC	
- I ransfer Settings	Pulse Mode	6	250204	Integer16	Ain Offset		0	1	
- Coau Filliware	- Others	7	250205	Integer16	Ale Dead		0	,	
	TPDO Config	/	250205	integerio	Ain_Dead		0	/	
	RPDO Config	8	250207	Unsigned8	Ain_Speed_Con		0	DEC	
	Custom Group	9	25020A	Integer32	Ain_Speed_Factor		45.776	·pm/v	
		10	25020B	Unsigned8	Ain_Torque_Con		0	DEC	
		11	25020C	Integer16	Ain_Torque_Factor		0.776	Arms/v	
		12	25020D	Integer16	Ain MaxT Factor		1.591	Arms/v	
< 1									

Set the values, modify the working mode (3 or -3), and then enable (F).

Figure 6-5 Analog input related parameters

# 6.2 Position Mode (1)

The position mode is include relative position mode, absolute position mode, and DIN position mode.

Regarding absolute position and relative position:

Absolute position: In the absolute position, each position has a unique encoding value corresponding to it. By reading the encoding value, the absolute position of the motor can be accurately determined.

Relative position: The relative position refers to the displacement of the motor or motion device relative to the starting position. The relative position usually requires an initial position reference point to accurately accumulate the displacement during the motion process.

We can further understand the absolute position and relative position through the following table:



Actual position	Execute operation	Actual position after execution
500	Absolute position 600	600
500	Relative position 600	1100

Index	Data Type	Name	Description	Setting Value	Unit
606000	Integer8	Operation _ mode	User to set the motor operation mode	1	DEC
604000	Unsigned16	Control word	Used to set the motor state Absolute position mode: 0x2F->0x3F(Single time) 0x103F(Multiple times) Relative position mode: 0x4F->0x5F DIN position mode: 0x2F	According to application	HEX
607A00	Integer32	Target_ position	The position specified by the user		inc
608100	Unsigned32	Profile_ speed	The speed at which the motor moves towards the target position in position mode	User-define d	rpm

Table 6-5 Comr	non Object Lis	t for Position I	Mode
----------------	----------------	------------------	------

Note: 0x3F can only run to the first recognized target position. If you want to move to another position after reaching the target position, you need to write the control word 6 first, and then write 3F, and the motor will move to the next position.

0x103F does not need to change the control word, and the motor will move to the current value of the target position.

#### 6.2.1 Internal Command Setting Position

The operation of setting the position mode with internal commands is basically the same as setting the speed mode in section 6.1.

#### 6.2.2 External IO Port Setting Position (DIN Position Mode)

Index	Data Type	Name	Description	Setting Value	Unit
608100	Unsigned32	Profile speed	The speed at which the user will run to the specified position	User-defi ned	rpm
202001	Integer32	Din_Pos0	The position the user		DEC

Table 6-6 Common Object List for DIN Position Mode



Unit

DEC

V

202002	Integer32	Din_Pos1	needs the motor to reach, up to 8 different positions can be set, and the motor will select according to the BCD code input of the multi-position control through the IO port	DEC
202003	Integer32	Din_Pos2		DEC
202004	Integer32	Din_Pos3		DEC
202005	Integer32	Din_Pos4		DEC
202006	Integer32	Din_Pos5		DEC
202007	Integer32	Din_Pos6		DEC
202008	Integer32	Din_Pos7		DEC

Assuming the IO port is set as shown below:



Figure 6-6 Multi-position - IO port settings

Then when the digital logic input of DIN3-DIN2-DIN1 is 010, it means to use multi-position control 2.

When the digital logic input of DIN3-DIN2-DIN1 is 011, it means to use multi-position control 3, and the motor will run to the specified position according to the set value.

#### 6.2.3 Analog Input Setting Position

To use this mode, you need to first add "Analog input maximum value," "Analog input minimum value," "Analog position maximum value," and "Analog position minimum value" in the analog quantity parameter interface.

13	25020E	Integer16	Ain_MaxVol		V
14	25020F	Integer16	Ain_MinVol		V
15	250210	Integer32	Ain_MaxPosition		DEC
16	250211	Integer32	Ain_MinPosition		DEC

	0 1	01		
Index	Data Type	Name	Description	Setting Value
250106	Unsigned16	ADC AI	Analog signal 1	Read Only
	9	-	original ADC data	,
			Analog Input signal1	
250206	Integer16	Ain_out	(AIN1) input voltage	Read Only

Table 6-7 Analog input setting speed related parameters

after filter, deadband



			and offset		
250201	Integer16	Ain_Correction_ Gain	Analog input correction gain	User-defined	DEC
250202	Integer16	Ain_Correction_ Offset	Analog input correction offset	User-defined	DEC
250203	Unsigned8	Ain_Filter	Analog input signal 1 (AIN1) filter		DEC
250204	Integer16	Ain_Offset	Analog input signal 1 (AIN1) offset	User-defined	V
250205	Integer16	Ain_Dead	Analog input signal 1 (AIN1) deadband		V
250207	Unsigned8	Ain_Speed_con	analog signal control speed, valid at operation mode 3 or -3 0: Invalid 1: Ain Control Speed 2: Ain Control Position	2	DEC
606000	Integer8	Operation mode	User to set the motor operation mode 1: Position mode	1	DEC
604000	Unsigned16	Control word	Used to set motor status 103F:Enable analog-position mode 6: Motor shaft release	103F or 6	HEX
25020E	Integer16	Analog_Input_ MAX	Maximum value of analog input used for position calculation	User-defined	DEC
25020F	Integer16	Analog_Input_ MIN	Minimum value of analog input used for position calculation	User-defined	DEC
250210	Integer32	Analog_Position _MAX	Maximum position value in analog position mode	User-defined	inc
250211	Integer32	Analog_Position _MIN	Minimum position value in analog position mode	User-defined	inc





Figure 6-7 Simulated Input and Position Relationship

As shown in the figure above, in this mode:

When "analog input effective value" is less than Analog_Input_MIN, the motor is at Analog_Position_MIN.

When "analog input effective value" is greater than Analog_Input_MIN and less than Analog_Input_MAX, the motor position is on the straight line of the analog position function.

When "analog input effective value" is greater than Analog_Input_MAX, the motor is at "maximum simulated position".

## 6.3 Torque Mode (4)

Torque mode refers to the motor's output torque being set as the target value, and the control system is used to adjust the motor's output to make it as close as possible or maintain it at the setting target torque.

#### 6.3.1 Internal Command Setting Torque

Index	Data Type	Name	Description	Setting Value	Unit
606000	Integer8	Operation mode	Used to set motor operation mode 4: Torque mode	4	DEC
604000	Unsigned16	Control word	Used to set motor status 0X0F: Enable driver	0x0F	HEX

Table 6-8 Common Object List for Torque Mode



607100	Integer16	Target	Target torque/Rated	User-de	%
		torque /8		lineu	
608000	Linsigned 32	Max_Speed	Maximum speed limit in	User-de	rom
	Unsignedsz	_Limit_rpm	torque mode	fined	ipin

If using AMPS software for operation, follow these steps:

"Parameter List" -> "Basic Parameters" -> Set parameters such as Control Word, Operation Mode, etc.

Parameter List × Digital	IO FU	nctions							
Parameter Group					e	6			operation mode of drive
Basic Operation	N	Index	Туре	Name	Set Value	Current Value	Unt		-3:Speed Control
- Section Loop	1	606100	Integer8	Operation_Mode_Buff		0	DEC	-	4:Torque Control
- 🚯 Velocity Loop	2	604100	Unsigned16	Statusword		31	HEX		1:Position Control
- Current Loop	3	606300	Integer32	Pos_Actual		0	inc		6:Homing mode
- Analog Setting	4	606C00	Integer32	Speed_Real		0	rpm		
- Din Spd/Pos Mode	5	607800	Integer16	l_q		0	Arms		
- 🕼 Pulse Mode	6	60F709	Unsigned16	Real_DCBUS		24	v		
- Config	7	260100	Unsigned16	Error_State		0	HEX		
RPDO Config	8	606000	Integer8	Operation_Mode	4	4	DEC	1	
- Custom Group	9	604000	Unsigned16	Controlword		6	HEX		
	10	607A00	Integer32	Target_Position		0	inc		
	11	608100	Unsigned 32	Profile_Speed		99.999	rpm		
	12	608300	Unsigned32	Profile_Acc		9.998	rps/s		
	13	608400	Unsigned32	Profile_Dec		9.998	rps/s		
	14	60FF00	Integer32	Target_Speed		0	rpm		
	15	607100	Integer16	Target_Torque%		0	%		
	16	607300	Unsigned16	CMD_q_Max		0.295	Arms	-	
	17	608500	Unsigned32	Quick_Stop_Dec		499.997	rps/s		
	18	300303	Unsigned8	Encoder_Data_Reset		0	HEX		
	19	607F00	Unsigned32	Max_Speed		9999.999	rpm	1	
								1	

Figure 6-7: Parameters related to the torque mode

## 6.3.2 Analog Input Setting Torque

Table 6-9 Related	Parameters	of Analog	Input	Settinas	for Torque
		••••••••••••••••••••••••••••••••••••••			

Index	Data Type	Name	Description	Setting Value	Unit
250106	Unsigned16	ADC_AI	Analog signal 1	Read	DEC
			Analog Input signal1	Only	
250206	Integer16	Ain out	(AIN1) input voltage	Read	V
250206	Integerite	Ain_out	after filter, deadband	Only	v
			and offset		
250201	Integer16	Ain_Correction_	Analog input correction		
230201	Integer 10	Gain	gain		DLC
250202	Integer16	Ain_Correction_ Offset	Analog input correction offset	User-def	DEC
250203	Unsigned8	Ain_Filter	Analog input signal 1 (AIN1) filter	ined	DEC
250204	Integer16	Ain_Offset	Analog input signal 1 (AIN1) offset		V



250205	Integer16	Ain_Dead	Analog input signal 1 (AIN1) deadband	V
25020B	Unsigned8	Ain_torque control	analog signal control torque, valid at operation mode 4 0:Invalid 1:Ain Control Torque 2:Ain Control Max.Torque	DEC
25020C	Integer16	Ain_Torque_Fac tor	Proportion factor for converting analog input voltage to torque	Arms/ V
25020D	Integer16	Ain_MaxT_Fact or	Proportion factor for converting max analog input voltage to maximum torque	Arms/ V

Assuming the input analog signal is Vin, after data processing, it is obtained as Vin_r, then we have:

Vin_r = Vin - Analog input offset voltage

If the absolute value of Vin_r is greater than the dead zone (i.e.,  $|Vin_r| > dead zone$ ), then the analog input effective data is:

Analog input effective data =  $|Vin_r|$  - dead zone

Otherwise, the analog input effective data is 0.

Driver's target torque = Analog input effective data * Analog-torque factor

For analog input setting torque can refer to section 6.1.4, which describes analog input setting speed

# 6.4 Pulse Mode (-4)

Table 6-10	Pulse	Mode	Related	Parameters
------------	-------	------	---------	------------

Index	Data Type	Name	Description	Setting Value	Unit
606000	Integer8	Operation mode	Used to set motor operation mode -4: Pulse mode	-4	DEC
604000	Unsigned16	Control word	Used to set motor status 0x2F : Enable driver	0x2F	HEX
250806	Integer16	Pulse frequency before gear conversion	Master input pulse speed without gear ratio, unit:inc/ms	Read	kHz
250807	Integer16	Pulse frequency after gear	Master input pulse speed with gear ratio,	Only	kHz



		conversionn	unit:inc/ms		
			Master_encoder pulse		
250804	Integer32	Gear_Master	input counting without		DEC
			gear ratio		
			Master_encoder pulse	Lleor do	
250805	Integer32	Gear_Slave	input counting with	finod	DEC
			gear ratio	Inteu	
250801	Integer16	Gear Factor[0]	Gear ratio =		DEC
			Gear_Factor[0]/		
250802	Unsigned16	Gear_Divider[0]	Gear_Divider[0]		DEC
			Pulse control mode		
			0:CW/CCW		
250803	Unsigned8	PD_CW	1:Pulse/Dirction	0、1、2	DEC
			2:A/B(incremental		
			encoder) Mode		
250909		DD Filter	Master_encoder pulse	User-de	DEC
200008	Unsigned16		input filter	fined	DEC

Note: It needs to store control parameters and reboot driver after setting pulse mode.

Mode Name	Motor rotary forward	Motor rotary reverse
CW/CCW	pul	pul
Pulse/Dirct ion	pul	pul
A/B(incre mental encoder) Mode	pul	pul

Table 6-11 Pulse Mode Illustration

If using AMPS software for operation, follow these steps:

(1) Connect the DIR+, DIR-, PUL+, PUL- on the driver to the pulse source.

(2) Connect the driver to AMPS software.

(3) Click on "Parameter List" -> "Basic Operation" -> Set the corresponding parameters.

(4) Change the working mode and enable the driver.

Then it will allow control of the motor via external pulses.



# 6.5 Homing Mode (6)

In motor control systems, homing mode is a motion control mode used to determine the initial position of the motor, also known as the reference point or zero point.

The workflow for the home position mode is as follows:

Enter homing mode-> Search for the home position-> Determine the home position-> Return to the home position

Index	Data Type	Name	Description	Setting Value	Unit
606000	Integer8	Operation mode	Used to set motor operation mode 6: Homing mode	6	DEC
604000	Unsigned16	Control word	Used to set motor status 0x0F->0x1F : Enable driver	F->1F	HEX
609800	Integer8	Homing method	method for searching homing	User-def ined	DEC
609900	Unsigned8	Group_Homing_ Speed			
609901	Unsigned32	Homing_Speed_ Switch	velocity for searching position_limit switch/home_switch signal	User-def ined	rpm
609902	Unsigned32	Homing_Speed_ Zero	velocity for searching home signal and Zero position	User-def ined	rpm
609903	Unsigned8	Homing_Power_ On	bit0: 1start searching homing when power on and the first enable driver bit1:1auto save homing information	0、1	DEC
609904	Integer16	Homing_Current	Max current for finding homing	User-def ined	Arms
609905	Unsigned8	Home_Offset_ Mode	homing offset mode control 0: run to the homing offset point. The actual position will be 0. 1: run to the home event happen point.	0、1	DEC

Table 6-12 Homing Mode Related Parameters



			The actual position will		
			be "-homing offset"		
609906	Unsigned8	Home_N_Blind	Home_N_Blind	0、1	DEC
		Homing Accolor	Acceleration for		
609A00	Unsigned32	HUITINING_ACCEID	searching home		rps/s
		allon	position		
			The offset position		
607000	Integer22	Homo Offect	between final stop	User-def	DEC
007000	integer52	Home_Onset	position and zero	ined	DEC
			position		

Regarding the Homing_Index_Blind:

Homing_Index_Blind is set to avoid different results when homing in the same machine. It is used in situations where the homing signal and the index signal are very close. By setting this parameter to 1 before homing, the driver will automatically find a suitable blind window. In this way, during the homing process, when the homing signal is found, the index signal within the blind window will be ignored. By default, the Homing_Index_Blind is 0, but setting it to 1 will automatically change to 0 or 2 according to the index signal position. If there are changes in the mechanical design later, just reset this parameter to 1. This ensures that the result of each homing is the same, avoiding inconsistency problems caused by close signals.

In the process of searching for the home position, there are different searching methods, as described in the homing mode mentioned above, and the following table describes some of the homing modes with illustrations.

Note:

(1) The high levels in the list below are effective levels, and the low levels are ineffective levels.

(2) When configuring the mode, attention should be paid to the timing of all parameters, not just one parameter line.

Homing Method	Mode Description	Illustration
1	When the negative limit is high, it reverses upon encountering the index signal; when the negative limit is low, it is the home position when encountering the index signal.	Motor Z signal



2	When the positive limit is high, it reverses upon encountering the index signal; when the positive limit is low, it is the home position when encountering the index signal.	Motor Z signal Positive limit
3	The initial direction is positive. If the home signal is low, the motor reverses when the home signal goes high and encounters the index signal. If the home signal is high, it marks the home position when it goes low and encounters the index signal	Motor Z signal
4	The initial direction is positive. If the home signal is high, the motor reverses when the home signal goes low and encounters the index signal. If the home signal is low, it marks the home position when it goes high and encounters the index signal.	Motor Z signal Home signal



5	The initial direction is negative. If the home signal is low, the motor reverses when the home signal goes high and encounters the index signal. If the home signal is high, it marks the home position when it goes low and encounters the index signal. The initial direction	Motor Z signał Home signal
6	is negative. If the home signal is high, the motor reverses when the home signal goes low and encounters the index signal. If the home signal is low, it marks the home position when it goes high and encounters the index signal.	Motor Z signal
7	The motor Z signal and the home signal timing refer to mode 3; if the positive limit generates an rising edge, the motor reverses, and when the home signal generates a pulse (010) after encountering the index signal, it is marked as the home position.	Motor Z signal Home signal Positive limit



<b></b>		
	and the home signal	
	timing refer to mode	<b>↓</b>
	<i>1</i> : if the positive limit	
	4, il the positive limit	
	edge the motor	
	reverses and when	()→
	the home signal	Motor Z signal
8	generates an rising	Home signal
	edge and then a	Positive limit :: : //
	downward edge, the	
	motor reverses, and	
	after reversing and	
	encountering the	
	index, it is marked	
	as the home	
	position.	
	The initial direction	
	is positive.	
	① When the	<b>↓</b> ⊕
	positive limit	
	encounters an rising	<b>▲</b> ⊕
	edge, the motor	<b>∢</b> ®
	reverses, and after	Motor Z signal
	the home signal	
	generates an rising	Positive limit
	edge, it encounters	
	ine index signal and	
9	home position	
	(2) When the home	
	signal generates a	
	downward edge, the	
	motor reverses, and	
	after the home	
	signal generates an	
	rising edge again, it	
	encounters the	
	index signal and is	
	marked as the home	
	position.	



	The initial direction	nn
	is positive.	
	① When the	
	positive limit	<b>⊢</b> ©►
	generates an rising	
	edge the motor	
	reverses and after	<u></u> <u> </u>
	the home signal	Motor Z signal
	apporatos an rising	Home signal
	odgo the motor	Positive limit
	rovorsos again and	
	offer the home	
10		
10	signal generates a	
	downward edge, it	
	encounters the	
	index signal and is	
	marked as the nome	
	position.	
	② When the home	
	signal generates a	
	downward edge, it	
	encounters the	
	index signal and is	
	marked as the home	
	position.	
	The initial direction	∥//∥
	is negative.	
	① When the	_ <b>⊙</b> ≁
	negative limit	└──── <b>⊙</b> ≁
	generates a	
	downward edge, the	
	motor reverses, and	Motor Z signal
	after the home	
	signal generates a	Negative limit
11	pulse (010) and	
	encounters the	
	index, it is marked	
	as the home	
	position.	
	② If the home	
	signal changes from	
	low to high, the	
	motor reverses, and	
	if the home signal	



12	changes from high to low again, it encounters the index and is marked as the home position. The initial direction is negative. ① When the negative limit generates a downward edge, the motor reverses, and after the home signal generates a pulse (010), the motor reverses again, and if the home signal changes from low to high, it encounters the index and is marked as the home position. ② If the home signal changes from high to low, the motor reverses, and if the home signal	Motor Z signal Home signal Negative limit
	position. ② If the home signal changes from	
	motor reverses, and	
	if the home signal	
	changes from low to	
	high again, it	
	encounters the	
	index and is marked	
	as the home	
	position.	



	The initial direction	
	is negative.	
	(1) When the	<u>∽</u> @+
	negative limit	
	generates a	
	downward edge, the	
	motor reverses, and	Motor Z signal
	if the home signal	
	changes from low to	Negative limit
	high it encounters	
	the index and is	
	marked as the home	
13		
	(2) If the home	
	signal changes from	
	high to low, the	
	motor reverses, and	
	if the home signal	
	changes from high	
	to low again, it	
	encounters the	
	index and is marked	
	as the home	
	position	
	The initial direction	
	is pegative	
	13 Negative.	<b>∢</b> _©
		<b>←</b> @
	negative innit	
	generates a	
	downward edge, the	<b>←</b> ⊕/
	motor reverses, and	Motor Z signal
	if the home signal	Home signal
	changes from low to	Negative limit
1.1	high, the motor	· · · · //
14	reverses again, and	
	when the home	
	signal changes from	
	high to low, it	
	encounters the	
	index and is marked	
	as the home	
	busilion.	
1	I SIGNAL CHANGES FROM	



	1	
	high to low, the motor reverses, and if the home signal changes from high to low again, it encounters the index and is marked as the home position.	
17	When the negative limit generates an rising edge, the motor reverses; when the negative limit generates a downward edge, it is the home position.	Negative limit
18	When the positive limit generates an rising edge, the motor reverses; when the positive limit generates a downward edge, it is the home position.	Positive limit
19	The initial direction is the positive direction, when the home signal generates an rising edge, the motor reverses; when the home signal generates a downward edge, it is the home position.	Home signal



	The initial direction	
	is the positive	
	direction, when the	
	home signal	<u></u>
20	generates a	
20	downward edge, the	`⊘→
	when the home	÷
	signal generates an	
	rising edge, it is the	Home signar
	home position.	
	The initial direction	
	is the negative	
	direction, when the	
	home signal	
	generates an rising	
21	edge, the motor	`~@→
	reverses; when the	
	nome signal	Home signal
	downward edge it is	
	the home position.	
	The initial direction	
	is the negative	
	direction, when the	
	home signal	
	generates a	<b>←</b> ②-Z
22	downward edge, the	<b>←</b> 22
	motor reverses;	i
	when the home	Home signal
	signal generates an	
	home position	
	The initial direction	
	is positive.	
	① When the	
	positive limit	< <u>↓</u> ↓
	generates an rising	
23	edge, the motor	<b>▲</b> @
	reverses, and when	
	the home signal	Home signal
	generates a pulse	Positive limit
	(U1U), the	
	uownward edge IS	



24	marked as the home position. (2) When the home signal generates an rising edge, the motor reverses, and when the home signal generates a downward edge again, it is marked as the home position. The initial direction is positive. (1) When the positive limit generates an rising edge, the motor reverses, and when the home signal generates a pulse (010), the motor reverses again, and when the home signal changes from low to high, it is marked as the home position. (2) When the home signal generates a downward edge, the motor reverses, and when it generates an rising edge again, it is marked as the home	Home signal Positive limit	
	position.		



	The initial direction	ſ <i>/</i> ſ
	is positive.	
	① When the	
	positive limit	<b>←</b> ⊗∕
	generates an rising	
	odao tho motor	
	euge, the motor	<b>≺</b> ⊗∕
	reverses, and when	
	the home signal	Home signal
	changes from low to	Positive limit
	high, it is marked as	
25	the home position	
	(at the rising edge).	
	② When the home	
	signal generates a	
	downward edge, the	
	motor reverses, and	
	when the home	
	signal generates an	
	rising edge again it	
	is marked as the	
	home position	
	The initial disection	
	I he initial direction	
	is positive.	
	is positive. ① When the	
	is positive.①When thepositivelimit	
	<ul> <li>is positive.</li> <li>① When the positive limit generates an rising</li> </ul>	
	<ul> <li>is positive.</li> <li>① When the positive limit generates an rising edge, the motor</li> </ul>	
	<ul> <li>is positive.</li> <li>① When the positive limit generates an rising edge, the motor reverses, and when</li> </ul>	
	is positive. (1) When the positive limit generates an rising edge, the motor reverses, and when the home signal	Home signal
	is positive. (1) When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to	Home signal
	is positive. (1) When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor	Home signal
26	is positive. (1) When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor reverses again, and	Home signal
26	is positive. (1) When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor reverses again, and if the home signal	Home signal
26	is positive. (1) When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor reverses again, and if the home signal changes from high	Home signal
26	is positive. (1) When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor reverses again, and if the home signal changes from high to low again, the	Home signal
26	is positive. (1) When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor reverses again, and if the home signal changes from high to low again, the downward edge is	Home signal
26	is positive. (1) When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor reverses again, and if the home signal changes from high to low again, the downward edge is marked as the home	Home signal
26	is positive. (1) When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor reverses again, and if the home signal changes from high to low again, the downward edge is marked as the home position.	Home signal
26	<ul> <li>is positive.</li> <li>(1) When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor reverses again, and if the home signal changes from high to low again, the downward edge is marked as the home position.</li> <li>(2) When the home</li> </ul>	Home signal
26	<ul> <li>is positive.</li> <li>When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor reverses again, and if the home signal changes from high to low again, the downward edge is marked as the home position.</li> <li>When the home signal changes again, and if the home signal changes from high to low again, the downward edge is marked as the home position.</li> </ul>	Home signal
26	<ul> <li>is positive.</li> <li>① When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor reverses again, and if the home signal changes from high to low again, the downward edge is marked as the home position.</li> <li>② When the home signal generates a downward edge it is</li> </ul>	Home signal
26	<ul> <li>is positive.</li> <li>① When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor reverses again, and if the home signal changes from high to low again, the downward edge is marked as the home position.</li> <li>② When the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge as the home signal generates a downward edge, it is marked as the home signal generates a downward edge as the home signal gen</li></ul>	Home signal
26	<ul> <li>is positive.</li> <li>When the positive limit generates an rising edge, the motor reverses, and when the home signal changes from low to high, the motor reverses again, and if the home signal changes from high to low again, the downward edge is marked as the home position.</li> <li>When the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home position.</li> </ul>	Home signal Positive limit



	The initial direction	
	is negative.	
	① When the	
	negative limit	
	generates an rising	
	edge, the motor	
	reverses, and when	
	the home signal	Home signal
	generates a pulse	Negative limit
	(010), the	
27	downward edge is	
21	marked as the home	
	position.	
	② When the home	
	signal changes from	
	low to high, the	
	motor reverses, and	
	when the home	
	signal changes from	
	nigh to low again, it	
	home position	
	nome position.	
	The initial direction	
	The initial direction	
	The initial direction is negative.	
	The initial direction is negative. ① When the negative limit	
	The initial direction is negative. ① When the negative limit generates an rising	
	<ul> <li>The initial direction is negative.</li> <li>① When the negative limit generates an rising edge, the motor</li> </ul>	
	<ul> <li>The initial direction is negative.</li> <li>① When the negative limit generates an rising edge, the motor reverses, and when</li> </ul>	
	<ul> <li>The initial direction is negative.</li> <li>① When the negative limit generates an rising edge, the motor reverses, and when the home signal</li> </ul>	Home signal
	The initial direction is negative. ① When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse	Home signal Negative limit
	The initial direction is negative. ① When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse and then reverses	Home signal Negative limit
28	The initial direction is negative. ① When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse and then reverses again, and when the	Home signal Negative limit
28	The initial direction is negative. ① When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse and then reverses again, and when the home signal	Home signal
28	The initial direction is negative. ① When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse and then reverses again, and when the home signal changes from low to	Home signal Negative limit
28	The initial direction is negative. ① When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse and then reverses again, and when the home signal changes from low to high, it is marked as	Home signal Negative limit
28	The initial direction is negative. ① When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse and then reverses again, and when the home signal changes from low to high, it is marked as the home position.	Home signal Negative limit
28	The initial direction is negative. ① When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse and then reverses again, and when the home signal changes from low to high, it is marked as the home position. ② When the home	Home signal Negative limit
28	The initial direction is negative. (1) When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse and then reverses again, and when the home signal changes from low to high, it is marked as the home position. (2) When the home signal changes from	Home signal Negative limit
28	The initial direction is negative. (1) When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse and then reverses again, and when the home signal changes from low to high, it is marked as the home position. (2) When the home signal changes from high to low, the	Home signal Negative limit
28	The initial direction is negative. (1) When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse and then reverses again, and when the home signal changes from low to high, it is marked as the home position. (2) When the home signal changes from high to low, the motor reverses, and	Home signal Negative limit
28	The initial direction is negative. (1) When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse and then reverses again, and when the home signal changes from low to high, it is marked as the home position. (2) When the home signal changes from high to low, the motor reverses, and when the home	Home signal Negative limit:
28	The initial direction is negative. (1) When the negative limit generates an rising edge, the motor reverses, and when the home signal generates a pulse and then reverses again, and when the home signal changes from low to high, it is marked as the home position. (2) When the home signal changes from high to low, the motor reverses, and when the home signal changes from	Home signal Negative limit



	in manufactures the	
	is marked as the	
	home position.	
29	The initial direction is negative. (1) When the negative limit generates an rising edge, the motor reverses, and when the home signal generates an rising edge, it is the home position. (2) When the home signal generates a downward edge, the motor reverses, and when the home signal generates an rising edge again, it is marked as the home position.	Home signal Negative limit
30	The initial direction is negative. ① When the negative limit generates an rising edge, the motor reverses, and when the home signal generates an rising edge, the motor reverses again, and when the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home signal generates a downward edge, it is marked as the home	Home signal Negative limit



33、34	The next pulse of the motor Z signal	Motor Z signal
35	Use the current position of the motor as the reference home position	
-17、-18	-17: The home position is the negative end of the mechanical limit -18: The home position is the positive end of the mechanical limit	

If using AMPS software for debugging, there are two methods: The first method: Configure the homing curve by selecting: Click "Homing Definition" in the work area

Assuming we need follows:

home signal - home switch signal

Use limit switches

Motor stop position - negative direction home signal falling edge

Set the homing parameters to default

Then we can follow these steps:

First step: Set homing parameters

Second step: Configure the homing curve according to the requirements

Third step: Click "Write"





Figure 6-8 Homing Mode Configuration

(2) Click on "IO Settings" -> Set DIN1, DIN2 as home signal and positive limit (in the example, the electric level property is set to normally open, remember to power on first)

Work Area	Param	eter List	Homing Defi	nition	D	igital	il IO Functio	ons 🔀	Error	Manageme	ent					
- Driver	- Digital I	nput								Digital	Output					
Debugging		Function		Si	im R	eal	Level	Internal	_		Function		Sim	Real	Level	
Parameter List	DIN1	P Limit+		~		$\supset$	NO ~	0		OUT	None	~		0	NO ~	
	DIN2	Home Signa	l -	~		)	NO ~	0		OUT	2 None	~	$\square$	0	NO ~	
	DIN3	None		~		)	NO ~	0		OUT	³ None	~	$\square$	0	NO ~	
	DIN4	None		~		C	NO ~	0		OUT	4 None	~	$\square$	0	NO ~	
	DIN5	None		~		$\supset$	NO ~	0		OUT	5 None	~		0	NO ~	
	DIN6	None		~		$\supset$	NO ~	0		OUT	5 None	~		0	NO ~	
	DIN7	None		~		$\supset$	NO ~	0		OUT	7	$\sim$		0	$\sim$	
	DIN8	None		~		$\supset$	NO ~	0		OUT	3	$\sim$		0	$\sim$	

Figure 6-9 IO Port Settings

(3)In the basic parameters, set the working mode to 6, and change the control word from  $0x0F \rightarrow 0x1F$ 



/ork Area	Parameter List × Homin	g Defi	nition	Digital IO	Functions Error Man	agement			
- 📂 Driver 📃	🕒 Parameter Group								
- Ebugging	😑 🔤 Default Group	N	Index	Туре	Name	Set Value	Current Value	Uint	
- 10 Setting	Basic Operation	1	606100	Integer8	Operation_Mode_Buff		6	DEC	
- Parameter List	Velocity Loop	2	604100	Unsigned16	Statusword		5637	HEX	
- 🕄 Homing Definition	- Current Loop	3	606300	Integer32	Pos Actual		0	inc	
- 🔀 Scope	- 🕼 Motor Setting	4	606C00	Integer32	Speed Real		0	rpm	
A Fault Managet	Analog Setting	5	607800	Integer16	10		0	Arms	
Transfer Settings	Din Spd/Pos Mode	6	60F709	Unsigned16	Real DCRUS		48	V	
Cood Himward	- 💼 Others	7	260100	Unsigned16	Frror State		0	HEX	
	- TPDO Config	,	606000	Integer9	Operation Mode	6	6	DEC	
	RPDO Config	0	604000	Unsigned 16	Controlword	16	16		
	Custom Group	9	604000	Unsigned 16	Controlword			HEA	
		10	607A00	Integer32	Target_Position		0	inc	
		11	608100	Unsigned 32	Profile_Speed		99.999	rpm	
		12	608300	Unsigned32	Profile_Acc		9.998	rps/s	
		13	608400	Unsigned32	Profile_Dec		9.998	rps/s	
		14	60FF00	Integer32	Target_Speed		0	rpm	
		15	607100	Integer16	Target_Torque%		0	%	
		16	607300	Unsigned16	CMD_q_Max		0.295	Arms	
		17	608500	Unsigned32	Quick_Stop_Dec		499.997	rps/s	
		18	300303	Unsigned8	Encoder_Data_Reset		0	HEX	

Figure 6-10 Basic Parameter Settings

(4) By modifying the input value of the IO port, you can find the home position.

#### Note:

If using simulation, the limit signal needs to be inverted (the home signal does not need to be inverted). For example, in method 24, when the positive limit generates an rising edge, it can cause the motor to reverse. We need to change the IO port from the following state

	DIN1	Home Signal	$\sim$	$\square$	0	NO $\sim$	0
	DIN2	P Limit+	$\sim$		0	NO ~	
to							
	DIN1	Home Signal	$\sim$		0	NO ~	0
	DIN2	P Limit+	$\sim$	Γ	0	NO ~	0

to create an rising edge that will reverse the motor, and so on for other methods.

The second method: Directly write and select the mode

The second method is not much different from the first method. The second method is suitable for people who are familiar with the homing method. Direct writing can save some time.



Parameter List Homing Definition ×	Digital IO Functions	Error Management	
Homing Curve Config		//	
Home Trig Use Home Switch $$			
Homing Switch Home Switch $\vee$		' <b>⊷</b> ⊜)	
Org Search Dir 🛛 🗸 Use Limi	it Switch	<b>←</b> ⊘	
Mot Stop Pos At the falling edge of the negative direct	tion I ∨	<b>∢</b> @	
Actual Home Method		,,	
Pre-Set Home Method 23 Write Down	Positive Limit		
Homing Parameters Setting			
Home Offset(DEC) 0 Home Back Sp	peed(rpm) 200.000	Home Current(Ap) 0.308	Homing When Power on
Home Acc(rps/s) 19.997 Home Speed(	rpm) 100.000	Home Offset Method 0: Run to Home-Of	fset ~

Figure 6-11 Directly Write Homing Method


# **Chapter 7: Performance Tuning**

## 7.1 Speed Loop Tuning

Table 7-1 Speed Loop Tuning Related Parameters

Index	Data Type	Name	Description	Unit
60F901	Unsigned16	Kvp[0]	Speed loop proportional gain ,used to set the speed loop to follow the speed	DEC
60F902	Integer32	Kvi[0]	Speed loop integral gain ,used to eliminate the static error in the speed control	DEC
60F907	Integer32	Kvb_threshold		Ар
60F908	Integer32	Kvi_Sum_Limit	limiter of velocity control PI loop's integral part	Ар
60F915	Unsigned8	Speed_Demand_Fil ter	filtered Speed_Demand	rpm
60F903	Unsigned8	Notch_N	Frequency of notch filter BW=Notch_N*10+100[Hz]	Hz
60F904	Unsigned8	Notch_On	Notch filter enable	DEC
60F905	Unsigned8	Speed_Fb_N	Bandwidth of speed feedback filter BW=Speed_Fb_N*20+100[ Hz]	Hz
60F906	Unsigned8	Speed_Mode	0:2nd Order FB LPF 1:No FB LPF 2:Observer FB 4:1st Order FB LPF 10:2nd LPF+SPD_CMD FT	HEX
60F90A	Integer32	Target_Speed_Win dow		inc/16.38 DEC rpm
60F91C	Unsigned16	Speed-loss judgment time	Loss of speed judgment time	ms
201018	Unsigned16	Dout_Real	bit0: Dout1 bit1: Dout2 bit2: Dout3	HEX
60F914	Integer16	CMD_q_PID	input value of notch filter	DEC

In the process of speed loop tuning, we mainly use two parameters - speed loop proportional gain and speed loop integral gain. They work together to affect the system's



response characteristics and stability. How they are used in conjunction depends on the specific requirements and characteristics of the system.

**Speed loop proportional gain:** The proportional gain controls the intensity of the system's response to speed errors, that is, the dynamic characteristics of the speed loop. Increasing the proportional gain can increase the system's response speed, but it may also lead to an increase in overshoot and system instability.

**Speed loop integral gain:** The integral gain is mainly used to eliminate static errors in the speed loop, ensuring that the system reaches accurate speed tracking in a steady state. Increasing the integral gain can reduce static errors, but it may also lead to system overshoot and oscillation.

When using these two parameters together, you can follow these principles:

**Firstly adjust the speed loop proportional gain**: Start with a relatively small speed loop proportional gain and gradually increase it to observe the system's response. Increasing the proportional gaincan improve the system's response speed, but be careful that too high a gain may cause overshoot and instability.

**Then adjust the speed loop integral gain:** Once a satisfactory speed response is achieved, you can start to gradually increase the speed loop's integral gain to reduce static errors. But be careful that too high an integral gain may cause system oscillation.

**Observe overshoot and stability:** During the adjustment process, observe the system's overshoot and stability. If there is too much overshoot or the system oscillates, it may be necessary to appropriately reduce the speed loop proportional gain and integral gain.

**Balance response and stability:** Adjust to find a balance between response speed and stability. If you need a faster response speed, you can appropriately increase the proportional gain; if you need lower static errors, you can appropriately increase the integral gain. But avoid too high a parameter setting that leads to system instability.

In summary, the speed loop proportional gain and speed loop integral gain need to be adjusted gradually in practical applications, and observe the system's response and stability. According to the system's requirements, balance the response speed and stability to find the best parameter settings.

The following are the effects of different KP and KI on speed in speed mode when the motor accelerates from 0rpm to 100rpm with an acceleration of 50rps/s.





Figure 7-1 KP=100 KI=0

 								 X1 = 187.500 X2 = 302.500 dX = 115.000
 								Y1 = 107.330 Y2 = 107.414 dY = 0.084rp
 (	warman a free	and the second second	*****	www.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	an water and a second of the second of the second	al-varamentertaria	 Nr*********
 ļ								 

Figure 7-2 KP=1000 KI=0



 									X1 = 205.000ms X2 = 265.000ms dX = 60.000ms Y1 = 105.664rpn
 									Y2 = 104.953rpr dY = -0.711rpm
 	and the second	an subminited the set	<u>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</u>	arhhron to you want they a	hully manual	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www	Manually	M. M.
				- 		-			

### Figure 7-3 KP=2000 KI=0



Figure 7-4 KP=500 KI=0





### Figure 7-5 KP=500 KI=20



Figure 7-6 KP=500 KI=60





Figure 7-7 KP=500 KI=200

## 7.2 Position Loop Tuning

Table 7-2 Position	Loop Tuning	g Related Parameter	s
		3	-

Index	Data Type	Name	Description	Unit	
60FB01	Integer16	Kpp[0]	Kp of position loop	Hz	
COED02	Integer16	K Valacity FF	velocity feedforward of	0/	
00FD02	megerro	K_Velocity_FF	position loop	70	
			Acceleration feedforward of		
			position loop		
			Note:only CD3 accept the		
			unit ""%"",set the value by		
60FB03	Integer16	K_Acc_FF	the ""%"" must be base on	DEC	
			the right auto-tuning		
			result.Otherwise the value		
			show by ""%"" could be not		
			right.		
60FB05	Unsigned8	Pos_Filter_N	Average filter parameter	DEC	
606500	Linsigned32	Max_Following_Err	Applied to set the value of	inc	
000000	Unsignedoz	or	maximal following error		
606600	Linsigned16	Time_Following_Err	Following Error Timeout	ms	
000000	Unsigned to	or		1115	
250809	Integer16	Reserved		DEC	
			target position window;		
		Target Pos Windo	In positioning mode, if	inc	
606700	Unsigned32		position difference between		
			Pos_Actual and		
			Pos_Target is smaller than		



			"Target_Pos_Window"(606	
			7.00) and lasting time >=	
		Position_Window_time(606		
		8.00) then		
			Status_Word.bits.Target_re	
			ached is set to 1	
60F400	Integer32	Pos_Error	Following error of position	inc

The specific steps for position loop tuning are as follows:

Similar to speed loop tuning, we often use two parameters, position loop speed feedforward and position loop proportional gain, to work together to improve the system's positioning performance. The general steps are as follows:

**Initial settings:** First, set both the position loop proportional gain and the position loop velocity feedforward to smaller initial values to ensure that the system does not produce excessive overshoot or instability during the adjustment process.

**Increase the position loop proportional gain:** Gradually increase the position loop proportional gain and observe whether the system's positioning performance has improved. A larger proportional gain can make the system respond faster to position errors and reduce positioning errors.

**Observe overshoot and stability:** As the position loop proportional gain increases, observe whether the system's positioning response has become faster, and pay attention to whether there is an overshoot phenomenon and whether stability is affected.

**Increase the position loop velocity feedforward:** Under the appropriate proportional gain, gradually increase the position loop velocity feedforward. Velocity feedforward can predict the velocity command in advance to further reduce positioning errors, especially in situations such as variable speed or sudden stops.

**Observe performance improvement:** After increasing the position loop velocity feedforward, observe whether the system's positioning performance has improved. Pay special attention to whether the position error has been reduced and whether good stability is maintained under rapidly changing commands.

**Parameter coordination and fine-tuning:** The position loop velocity feedforward and the position loop proportional gain are interrelated, and their adjustments will affect each other. During the fine-tuning process, based on the actual situation, it may be necessary to adjust the two parameters multiple times to achieve the best positioning performance and stability.



## 7.3 Comprehensive Adjustment

Position loop tuning and speed loop tuning are two important links in the control system. They affect each other and need to be used reasonably in conjunction to achieve excellent control performance. The following are the general steps for their coordinated use:

**Determine the tuning order:** Generally, speed loop tuning should be performed first, followed by position loop tuning. This is because the position loop is controlled on the basis of the speed loop, so it is crucial to first ensure the stability and performance of the speed loop.

**Speed loop tuning:** Adjust the speed loop proportional gain and integral gain to achieve rapid speed response and stable speed tracking. Observe the overshoot, stability, and response time of the speed loop, and make fine adjustments according to the requirements.

**Position loop tuning:** Based on the stable speed loop, adjust the proportional gain of the position loop. Increasing the proportional gain can improve the positioning response speed, but be careful about the phenomenon of overshoot. Set the velocity feedforward parameters of the position loop to reduce position errors, especially in situations such as variable speed and sudden stops. According to the actual application requirements, adjust the integral gain of the position loop to eliminate static errors.

The tuning process may require multiple iterations of adjustment to achieve the best control performance. According to the actual test results, fine-tune the parameters of the speed loop and position loop as needed until satisfactory results are achieved.



# **Chapter 8: Alarm Troubleshooting**

## 8.1 Troubleshooting with LED Alarm

When the drive operates normally, the green LED lights up, if the red LED lights up, you can further determine the cause of the fault by connecting to AMPS software. You can view the error code through Chapter 5.6 "Historical Errors and Alarms" and then go to 8.2 " Troubleshooting with Alarm Code" to resolve the issue further.

Alarm Code	Error Name	Error Causes	Correction Measures
FF40	Encoder ABZ Connection Alarm / Communication Encoder Break Error	<ol> <li>Encoder ABZ wiring error, encoder connector loose, ABZ is damaged.</li> <li>Communication encoder connection is loose, wiring sequence error,</li> <li>encoder is damaged, driver encoder 5V output is damaged.</li> </ol>	<ol> <li>Check if the encoder cable is correctly connected.</li> <li>Check if the encoder connector is loose.</li> <li>Check if the encoder is damaged.</li> <li>Replace the motor or encoder.</li> <li>Check if the encoder power supply is intact.</li> </ol>
FF41	Encoder UVW Connection Alarm / Communication Encoder Multi-turn Error	<ol> <li>The Hall UVW wiring isincorrect, the Hall connector is loose, and the Hall is damaged.</li> <li>The encoder has been disconnected from all power sources (including the encoder battery).</li> </ol>	<ol> <li>Check if the Hall sensor cable is correctly connected.</li> <li>Check if the Hall sensor installation is loose.</li> <li>Check if Hall sensor is damaged.</li> <li>Replace Hall sensor or encoder.</li> <li>Check the encoder battery voltage and reset the multi-turn error.</li> </ol>
7305	Encoder Count Alarm / Communication Encoder CRC Error	Encoder interference or incorrect feedback cycle settings.	<ol> <li>Check if the driver's ground wire is connected properly.</li> <li>Check if the equipment's ground wire is good.</li> <li>Power the driver with a separate power supply.</li> </ol>

## 8.2 Troubleshooting with Alarm Code (603F00)



4210	Temperature Alarm	The temperature of the drive's power module has reached the alarm value.	<ol> <li>Increase fans to improve the cooling environment of the electrical cabinet.</li> <li>Appropriately increase the installation distance of the driver.</li> <li>Check if the motor and driver selection is correct.</li> </ol>
3210	High Voltage Alarm	Power supply voltage exceeds the allowed input range. Braking resistor not connected. Braking resistor mismatch.	<ol> <li>Check if the power supply voltage is higher than the input range allowed by the driver.</li> <li>Check if the power supply voltage is stable.</li> <li>Confirm if the error occurs during deceleration; if so, consider increasing the braking resistor.</li> <li>Confirm the load inertia and re-evaluate the selection of the braking resistor.</li> </ol>
3220	Low Voltage Alarm	Power supply voltage is below the allowed input range	<ol> <li>Check if the power supply meets the required specifications.</li> <li>Replace with a power supply of higher wattage.</li> </ol>
2320	Drive output short circuit	1.There is a short circuit problem at the drive UVW and PE output terminals.	<ol> <li>Check if the motor power cable connection is correct.</li> <li>The drive may be damaged, please consider replacing the drive.</li> </ol>
7110	Absorption Resistor Alarm	Braking resistor parameters are not set correctly	
8611	Position Error Excessive Alarm	Control loop stiffness is too low. Motor phase sequence is incorrect.	1.Appropriately increase the ""Speed Loop Proportional Gain"" and ""Position Loop



		Drive or motor power is	Proportional Gain"".
		too low.	2.Replace the motor UV
		Maximum following error	phase wiring for testing.
		value is too small.	3.Change to a higher
			power motor and driver.
			4.Appropriately increase
			the ""Maximum
			Following Error"".
			1.Check if the power
		Logic voltage is below	supply output power
5112	Logic Low Voltage	18V, power supply	meets the requirements.
5112	Alarm	voltage is being pulled	2.Replace with a power
		down.	supply of greater output
			power.
			1.Check if the motor is
			equipped with a brake
		1.Mechanical device is	and confirm whether the
		iammed or has	brake is normally
		excessive friction.	released.
2350	Motor or Driver IIT	2.Motor phase sequence	2.Power off the driver or
	Alarm	is incorrect.	disconnect the motor
		3.Motor or driver power	shaft from the load to
		is too low.	check 3.if the motor and
			load move smootnly.
			Replace with a higher
			power motor and driver.
			the "Speed Loop
			Proportional Cain" and
		Control loop stiffness is	"Speed Loop Integral
		too low	Gain"
		Speed following error	2 Replace the motor's
7310	Speed Deviation	threshold is too small	UV phase wiring for
1010	opeca Demanen	Motor wiring sequence is	testing.
		incorrect.	3.Appropriately increase
		Encoder signal is faulty.	the ""Speed Following
		<u> </u>	Error Threshold"".
			4.Check or replace the
			encoder.
		Control loop stiffness is	1.Appropriately increase
		too low.	the "Speed Loop
4310	Speed Deviation	Speed following error	Proportional Gain" and
		threshold is too small.	"Speed Loop Integral
		Motor wiring sequence is	Gain".



		incorrect. Encoder signal is faulty.	<ul> <li>2.Replace the motor's</li> <li>UV phase wiring for</li> <li>testing.</li> <li>3.Appropriately increase</li> <li>the "Speed Following</li> <li>Error Threshold".</li> <li>4.Check or replace the</li> <li>encoder.</li> </ul>
7122	Motor Excitation Alarm / Communication Encoder Other Errors (Refer to 30030208)	Motor UVW phase sequence is incorrect. Encoder is not connected.	<ol> <li>Swap the U phase and V phase motor wires.</li> <li>Check if the encoder connection is loose.</li> </ol>
5530	Eeprom error	The drive fails to read the eeprom data correctly when powered on, the drive is disturbed, or the firmware is updated	<ul> <li>1.Initialize the parameters first -&gt; store the control loop parameters -&gt; store the motor parameters -&gt; restart.</li> <li>2.Re-set the parameters or import the parameter file.</li> <li>3.If the above two steps do not work, please contact the supplier.</li> </ul>
5210	Current sensor exception	The current sensor signal is offset or has too much ripple.	The current sensor is damaged, please contact the supplier.
2214	Software overcurrent	The current ADC sampling is close to the maximum value.	<ol> <li>Appropriately reduce the "target current limit."</li> <li>Or contact the supplier.</li> </ol>
8613	Homing error		
3130	Motor lack of phase	The motor UWV wiring is loose or the motor wire is not connected	Check if the motor UWV phase cable is loose or not connected.
6320	Motor data error	The motor model is not set, or the motor model does not exist.	Correctly set the motor model, save the motor parameters, and restart.
ff10	User lit fault	Please refer to the reasons for the motor or drive lit fault.	Please refer to the reasons for the motor or drive lit fault.
5443	Pre-enable error	The IO input is set to "pre-enable", and the	1.If the "pre-enable" function is not needed,



		corresponding input	please cancel the	
		does not receive a signal	corresponding IO	
		before the drive is	function.	
		enabled.	2.If the "pre-enable"	
			function is needed,	
			please first give a	
			hardware enable signal	
			at the corresponding IO	
			port, and then send an	
			enable command to the	
			drive.	
	Reached positive	The positive limit signal	Check and eliminate the	
5442	limit	is triggered	cause of triggering the	
			limit	
	Reached negative	The negative limit signal	Check and eliminate the	
5441	limit	is triggered	cause of triggering the	
			limit.	
	Pulse frequency	The input pulse	Check the input pulse	
FF30	too high	frequency exceeds the	frequency	
	5	allowed value.		
		I I	1.Correctly set the bus	
		The communication bus	offline time according to	
7500	Communication	is loose, or the controller	the controller's heartbeat	
	bus offline	does not send a	signal.	
		neartbeat signal to the	2. Check if the controller's	
		drive on time.	neartbeat signal is sent	
			on time.	
FF42	MCU watchdog		Please contact the	
	error		supplier	

## 8.3 Troubleshooting with Error States

## 8.3.1 Error State 1 (260100)

Error Bit	Error Name	Error Cause	<b>Correction Measures</b>
bit0	Refer to 26020010		
bit1	Encoder ABZ connection alarm/communication encoder disconnection error	<ol> <li>The encoder ABZ wiring is incorrect, the encoder connector is loose, and the ABZ is damaged.</li> <li>The communication</li> </ol>	<ol> <li>Check if the encoder cable is correctly connected.</li> <li>Check if the encoder connector is loose.</li> <li>Check if the encoder</li> </ol>



		encoder is loosely	is damaged.
		connected, wrong wiring	4.Replace the motor or
		sequence, the encoder is	encoder.
		damaged, the 5V output	5.Check if the encoder
		of the drive encoder is	power supply is intact.
		damaged.	
	Encoder UVW	1.The Hall UVW wiring isincorrect, the Hall	<ol> <li>Check if the Hall sensor cable is correctly connected.</li> <li>Check if the Hall sensor installation is</li> </ol>
bit2	connection alarm/communication encoder multi-turn error	connector is loose, and the Hall is damaged. 2.The encoder has been disconnected from all power sources (including the encoder battery).	<ul> <li>3.Check if Hall sensor is damaged.</li> <li>4.Replace Hall sensor or encoder.</li> <li>5.Check the encoder battery voltage and reset the multi-turn error.</li> </ul>
bit3	Encoder counting error/communication encoder CRC error	The encoder is interfered with or the feedback cycle is set incorrectly.	<ul> <li>1.Check if the drive ground wire is well connected.</li> <li>2.Check if the equipment ground wire is well connected.</li> <li>3.Use an independent power supply for the drive.</li> </ul>
bit4	Drive temperature too high	The temperature of the drive power module reaches the alarm value.	<ul> <li>1.Add the fan to improve the ventilation environment of the electrical cabinet.</li> <li>2.Appropriately increase the installation distance of the drive.</li> <li>3.Check if the motor and drive selection are correct.</li> </ul>
bit5	Bus voltage too high	<ol> <li>The power supply voltage exceeds the allowed input range.</li> <li>No braking resistor is connected.</li> </ol>	<ol> <li>Check if the power supply voltage is higher than the allowed input range of the drive.</li> <li>Check if the power</li> </ol>



		3.The braking resistor does not match.	supply voltage is stable. 3.Confirm whether the error occurs during deceleration, if so, consider increasing the braking resistor. 4.Confirm the load inertia and re-evaluate the selection of the braking resistor.
bit6	Bus voltage too low	<ul><li>1.The power supply voltage is below the allowed input range.</li><li>2.The power supply power is too low.</li></ul>	<ol> <li>Check if the power supply power meets the requirements.</li> <li>Replace with a higher power power supply.</li> </ol>
bit7	Drive output short circuit	1.There is a short circuit problem at the drive UVW and PE output terminals.	<ol> <li>Check if the motor power cable connection is correct.</li> <li>The drive may be damaged, please consider replacing the drive.</li> </ol>
bit8	Braking resistor exception	The brake resistor parameters are not set correctly	
bit9	Following error too large	<ol> <li>The control loop rigidity is too low.</li> <li>The motor phase sequence is incorrect.</li> <li>The power of the drive or motor is too small.</li> <li>The maximum following error value is too small.</li> </ol>	<ol> <li>Appropriately increase the "Kvp" and "Kpp".</li> <li>Replace the motor UV phase wiring for testing.</li> <li>Change to a higher power motor and drive.</li> <li>Appropriately increase the "maximum following error."</li> </ol>
bit10	Logic power low voltage	The logic voltage is lower than 18V, and the power supply voltage is pulled down.	<ul> <li>1.Check if the power supply output power meets the requirements.</li> <li>2.Replace with a power supply with greater output power.</li> </ul>
bit11	Motor or drive iit error	1.The mechanical device is stuck or the friction is	1.Check if the motor has a brake and confirm



		<ul><li>too large.</li><li>2.The motor phase sequence is incorrect.</li><li>3.The power of the motor or drive is too small.</li></ul>	whether the brake is normally released. 2.Power off the drive or disconnect the motor shaft from the load to check if the motor and load move smoothly
			3.Replace with a higher power motor and drive.
bit12	Speed follow error	<ol> <li>The control loop rigidity is too low.</li> <li>The speed follow error threshold is too small.</li> <li>The motor phase sequence is incorrect.</li> <li>There is a problem with the encoder signal.</li> </ol>	<ol> <li>Appropriately         <ul> <li>increase the "speed</li> <li>loop proportional gain"</li> <li>and "speed loop integral</li> <li>gain."</li> </ul> </li> <li>Replace the motor UV         <ul> <li>phase wiring for testing.</li> <li>Appropriately             <ul> <li>increase the "speed</li> <li>follow-up error</li> <li>threshold."</li> <li>Check or replace the</li> <li>encoder.</li> </ul> </li> </ul> </li> </ol>
bit13	Motor temperature too high	The motor temperature exceeds the alarm value	<ol> <li>Reduce the ambient temperature and improve cooling conditions.</li> <li>Reduce the motor acceleration and deceleration.</li> <li>Reduce the load.</li> </ol>
bit14	Motor excitation error/other errors of the communication encoder (please refer to 30030208)	<ol> <li>The motor UVW phase sequence is incorrect.</li> <li>The encoder is not connected.</li> </ol>	<ol> <li>1.Swap the U and V motor wires.</li> <li>2.Check if the encoder connection is loose.</li> </ol>
bit15	Eeprom error	The drive fails to read the eeprom data correctly when powered on, the drive is disturbed, or the firmware is updated	1.Initializetheparameters first -> storethecontrolloopparameters -> store themotorparameters ->restart.2.Re-settheparametersorimport



	the parameter file.
	3.If the above two steps
	do not work, please
	contact the supplier.

#### 8.3.2 Error State 2 (260200)

Error Bit	Error Name	Error Cause	<b>Correction Measures</b>
bitO	Current sensor exception	The current sensor signal is offset or has too much ripple.	The current sensor is damaged, please contact the supplier.
bit1	Software overcurrent	The current ADC sampling is close to the maximum value.	1.Appropriately reduce the "target current limit." 2.Or contact the supplier.
DItZ	Homing error		
bit3	Motor lack of phase	The motor UWV wiring is loose or the motor wire is not connected	Check if the motor UWV phase cable is loose or not connected.
bit4	Motor data error	The motor model is not set, or the motor model does not exist.	Correctly set the motor model, save the motor parameters, and restart.
bit5	User lit fault	Please refer to the reasons for the motor or drive lit fault.	Please refer to the reasons for the motor or drive lit fault.
bit6	Reserved		
bit7	Reserved		
bit8	Pre-enable error	The IO input is set to "pre-enable", and the corresponding input does not receive a signal before the drive is enabled.	<ol> <li>If the "pre-enable" function is not needed, please cancel the corresponding IO function.</li> <li>If the "pre-enable" function is needed, please first give a hardware enable signal at the corresponding IO port, and then send an enable command to the drive.</li> </ol>
bit9	Reached positive limit	The positive limit signal is triggered.	Check and eliminate the cause of triggering



			the limit
bit10	Reached negative limit	The negative limit signal is triggered	Check and eliminate the cause of triggering the limit.
bit11	Pulse frequency too high	The input pulse frequency exceeds the allowed value.	Check the input pulse frequency
bit12	Communication bus offline	The communication bus is loose, or the controller does not send a heartbeat signal to the drive on time.	1.Correctly set the bus offline time according to the controller's heartbeat signal. 2.Check if the controller's heartbeat signal is sent on time.
bit13	Full closed-loop encoder counting direction error	<ul> <li>1.Phase A and phase B signals are connected incorrectly.</li> <li>2.Incorrect setting of the encoder type.</li> <li>3.There is a phase difference between the A and B signals of the encoder.</li> </ul>	<ol> <li>Phase A and phase B signals are connected incorrectly.</li> <li>Incorrect setting of the encoder type.</li> <li>There is a phase difference between the A and B signals of the encoder.</li> </ol>
bit14	Main encoder connection error	The main encoder connection is incorrect.	Check if the encoder interface is normally connected.
bit15	Main encoder counting error	The encoder is interfered with or the feedback cycle is set incorrectly.	<ol> <li>Check if the drive ground wire is well connected.</li> <li>Check if the equipment ground wire is well connected.</li> <li>Use an independent power supply for the drive.</li> </ol>



# **Chapter 9 Common Object List**

**Object List Description** 

The object properties include data types, operation permissions, and parameter units. Operation permissions include: R — Readable W — Writable

If there is no parameter unit in the object properties column, it means the parameter unit defaults to internal units (DEC).

Note:

When performing write operations on parameters, attention should be paid to unit conversion, i.e., converting the required data into internal units (DEC). For specific parameter-related conversions, please refer to the last section of this chapter "Unit Conversion."

## 9.1 Common Object List

Name	UART Address	CANopen Address	Modbus Address	Properties	Description
Control word	604000	60400010	0x7400	Unsigned16 RW	bit0: Switch on bit1: Enable voltage bit2: Quick stop bit3: Enable operation bit4: Set-point(Mode 1), Homing operation start(Mode 6), Enable ip mode(Mode 7) bit5: Change set immediately(Mode 1) bit6: 0:related 1:absolute (Mode 1) bit7: Fault reset bit8: Halt bit9/bit10: Reserved bit11~bit15:Manufact urer specific
Status word	604100	60410010	0x7410	Unsigned16 R	bit0: Ready to switch on bit1: Switch on bit2: Operation

#### 9.1.1 Control Parameters



					enabled
					bit3: Fault
					bit4: Voltage enabled
					bit5: Quick stop
					bit6: Switch on
					disabled
					bit7: Warning
					bit8: Manufacturer
					specific
					bit9: Remote
					bit10: Target reached
					bit11: Internal limit
					active
					bit12: Set-point
					ack(Mode 1) ,
					speed=0(Mode 3),
					Homing
					attained(Mode 6),
					Ip-Mode active(Mode
					7)
					bit13: Following
					error(Mode 1) ,
					Homing error(Mode
					6)
					bit14: speed=0
					bit15: Manufacturer
					specific
					Operation mode 式
					-4: Pulse mode
					-3: Immediate speed
					mode
Operation	606000	6060008	0x7600	Integer8	1: Position mode
mode	000000	00000000	0.1000	R	3: Speed mode with
					Acceleration
					4: Torque mode
					6: Homing mode
					7: Interpolation mode

#### 9.1.2 DIN Mode

Name	UART Address	CANopen Address	Modbus Address	Properties	Description
Multi-position control 0	202001	20200120	0x4601	Integer32 RW	Select the absolute position of the motor



Multi-position control 1	202002	20200220	0x4602	through the IO port. For example, if the
Multi-position control 2	202003	20200320	0x4603	multi-position control 2 - multi-position
Multi-position control 3	202004	20200420	0x4604	control 1 - multi-position control
Multi-position control 4	202005	20200520	0x4605	0 are set to 010 respectively, it
ulti-position control 5	202006	20200620	0x4606	indicates that the motor will move to the
Multi-position control 6	202007	20200720	0x4607	position controlled by multi-position control
Multi-position control 7	202008	20200820	0x4608	2.

Name	UART Address	CANopen Address	Modbus Address	Properties	Description
Multi-speed control 0	202009	20200920	0x4609		
Multi-speed control 1	20200A	20200A20	0x460A		Select the motor running speed
Multi-speed control 2	20200B	20200B20	0x460B		the IO port. For
Multi-speed control 3	20200C	20200C20	0x460C	Integer32	multi-speed control
Multi-speed control 4	20200D	20200D20	0x460D	rpm	1 and Multi-speed Control
Multi-speed control 5	20200E	20200E20	0x460E		010, it indicates that
Multi-speed control 6	20200F	20200F20	0x460F		the speed of Multi-speed Control 2
Multi-speed control 7	202010	20201020	0x4610		

## 9.1.3 Digital I/O Parameters

Namo	UART	CANopen	Modbus	Broportios	Description
Name	Address	Address	Address	Fropences	Description
DIN polarity	201001	20100110	0x4201	Unsigned16 RW	Polarity definition of digital input signal bit0: Din1 bit1: Din2



					bit2: Din3
DIN simulate	201002	20100210	0x4202	Unsigned16 RW	Digital input simulate bit0: Din1 bit1: Din2 bit2: Din3
DIN1 function	201003	20100310	0x4203	Unsigned16 RW	DIN1functiondefinition (HEX)0001:Drive enable0002:Fault reset0004:Pre-enable0008:Kvi off0010:Positive limit0020:Negative limit0040:Homing signal0080:Speedcommand reverse0100:Multi-speedcontrol 00200:Multi-speedcontrol 10400:Multi-speedcontrol 20800:External inputfailure1000:Emergencystop2000:Start homing4000:Reserved8001:Multi-positioncontrol 28002:Multi-positioncontrol 3S002:8001:Electronicgear 08010:8010:Electronicgear 18020:8020:Electronicgear 2Electronic
DIN2 function	201004	20100410	0x4204	Unsigned16 RW	DIN2 function definition (Details



	1					
					refer to 201003)	
				Unsigned16	DIN3 function	
DIN3 function	201005	20100510	0x4205	RW	definition(Details	
					refer to 201003)	
				Linsignod16	DIN4 function	
DIN4 function	201006	20100610	0x4206		definition(Details	
				RVV	refer to 201003)	
				Linging od 1 G	DIN5 function	
DIN5 function	201007	20100710	0x4207	Unsigned to	definition(Details	
				RVV	refer to 201003)	
					DIN6 function	
DIN6 function	201008	20100810	0x4208	Unsigned to	definition(Details	
				RW	refer to 201003)	
					DIN7 function	
DIN7 function	201009	20100910	0x4209	Unsigned 16	definition(Details	
				RW	refer to 201003)	
					DIN8 function	
DIN8 function	20100A	20100A10	0x420A	Unsigned16	definition(Details	
				RVV	refer to 201003)	
					bit0: Din1	
	20100B	20100B10	0x420B	Unsigned16	bit1: Din2	
DIN status				R	bit2: Din3	
	004005	00400540	0.4005	Unsigned16	Polarity definition of	
DOUT polarity	20100E	20100E10	0x420E	RW	digital output	
DOUT	004005	00400540	0 4005	Unsigned16	Digital output	
simulate	20100F	20100F10	0x420F	RW	simulate	
					DOUT1 definition	
					0001: Drive ready	
					0002: Drive error	
					0004: Position reach	
					0008: Zero speed	
					0010: Motor brake	
DOUT1	201010	20101010	0x4210	Unsigned16	0020: Speed reach	
function				RW	0040: Index signal	
					0080: Speed limit	
					0100: Motor enable	
					0200: Position limit	
					0400 [.] Home found	
					0800: Torque reach	
<u> </u>					DOUT2	
DOUT2	201011	20101110	0x4211	Unsigned16	definition(Details	
function	201011	20101110		RW	refer to 20100F	
	201012	20101210	0v/212	Linsigned16		
00013	201012	20101210	074212	Unargineuro	20013	



function				RW	definition(Details
					refer to 20100F)
				Lippigpod16	DOUT4
DOU14	201013	20101310	0x4213		definition(Details
TUNCTION				R V V	refer to 20100F)
				Lincignod16	DOUT5
function	201014	20101410	0x4214		definition(Details
TUTICUOT					refer to 20100F)
DOUTE				Lincignod16	DOUT6
function	201015	20101510	0x4215		definition(Details
TUNCTION					refer to 20100F)
					DOUT7
function	201016	6 20101610	0x4216		definition(Details
TUNCTION				R V V	refer to 20100F)
				Lippigpod16	DOUT8
DOUTO	201017	20101710	0x4217		definition(Details
Tunction				RVV	refer to 20100F)
					Digital output status
				Lincian ed 1 C	bit0: Dout1
DOUT status	201018	20101810	0x4218	Unsigned to	bit1: Dout2
				r vv	bit2: Dout3

## 9.1.4 Analog Input Mode

There is no Modbus address for following parameters, usually use AMPS software to modify parameters

Namo	UART	CANopen	Proportios	Description
Name	Address	Address	Froperties	Description
Analog	250201	25020110	Unsigned	Raw value for analog
raw value	250201	25020110	16R	input
Analog				Calibration gain for
Input	250202	25020210	Integer16	external analog input
aniput	250202	25020210	RW	signal(related to
calibration gain				hardware parameters)
Analog				Calibration offset for
Input	250202	25020209	Integer16	external analog input
Calibration	250205	23020308	RW	signal(related to
Offse				hardware parameters)
			Uncigned	Filter coefficient for
Analog_Filter	250204	25020410		external analog input
				signal
Applog Offect	250205	25020510	Integer16	Offset for external
Analog_Oliset	200200	25020510	RW	analog input signal



Analog_Dead	250206	25020610	Integer16 RW	Dead zone setting for external analog input signal
Analog Input Effective Data	250207	25020708	Integer16 RW	Analog input signal after filter
Analog_Speed Control	250208	25020810	Unsigned8 RW	Analong input signal control speed,valid in mode 3 and -3 0: Disable 1: Ain control speed
Analog_Dead_H	250209	25020910	Integer16 RW	For analog control,if actual analog input value greater than this data,it will output 0 Default: 0, indicates invalid
Analog_Dead_L	25020A	25020A20	Integer16 RW	For analog control,if actual analog input value smaller than this data,it will output 0 Default: 0, indicates invalid
Analog_Speed_ Factor	25020B	25020B08	Integer32 RW	Convertion coefficient between analog and speed
Analog_Torque Control	25020C	25020C10	Unsigned8 RW	Analong input signal control torque,valid in mode 4 0: Disable 1: Ain control output torque 2: Ain control maximum torque
Analog_Torque_ Factor	25020D	25020D10	Integer16 RW	Convertion coefficient between analog and torque
Analog_MaxTorq ue_Factor	250201	25020110	Integer16 RW	Convertion coefficient between analog and maximum torque



### 9.1.5 Pulse Mode

Name	UART Address	CANopen Address	Modbus Address	Properties	Description
Electronic gear numerator 0	250801	25080110	0x5601	Integer16 RW	Electronic gear numerator
Electronic gear denominat or 0	250802	25080210	0x5602	Unsigned16 RW	Electronic gear denominator
Pulse mode	250803	25080308	0x5603	Unsigned8 RW	Pulse mode control 0:Pulse direction mode 1:Dual pulse mode 2:Incremental encoder mode
Pulse raw data	250804	25080420	0x5604	Integer32 RW	Pulse count amount from IO port
Pulse data After electronic gear conversion	250805	25080520	0x5605	Integer32 RWL	Pulse data After electronic gear conversion
Pulse raw frequency	250806	25080610	0x5606	Integer16 R kHz	Pulse frequency from IO port
Pulse frequency After electronic gear conversion	250807	25080710	0x5607	Integer16 R kHz	Pulse frequency after electronic gear conversion = Pulse raw frequency*electronic gear ratio
Pulse filter coefficient	250808	25080810	0x5608	Unsigned16 RW	Filter parameter for pulse input
Electronic gear numerator 0	250801	25080110	0x5601	Integer16 RW	Electronic gear ration=electronic gear numerator/electronic gear denominator
Electronic gear denominat or 0	250802	25080210	0x5602	Integer16 RW	Similar to DIN mode, select the electronic gear through the input of the IO port. For
Electronic	250901	25090110	0x5701	Integer16	example, if the



gear				RW	Electronic gear
numerator					2,Electronic gear 1 and
1					Electronic gear 0 as set
Electronic					to 010, it indicates that
gear	250000	25000240	0.45700	Unsigned16	the motor will use
denominat	250902	25090210	0x5702	RW	Electronic gear 2.
or 1					
Electronic					
gear	250002	25000210	075702	Integer16	
numerator	200903	25090510	0,5705	RW	
2					
Electronic					
gear	250004	25090410	0x5704	Unsigned16	
denominat	230904	23090410	0737.04	RW	
or 2					
Electronic					
gear	250005	25090510	0x5705	Integer16	
numerator	200000	23030310	0,0700	RW	
3					
Electronic					
gear	250006	25090610	0x5706	Unsigned16	
denominat	230300	20030010	070100	RW	
or 3					

#### 9.1.6 Device ID and Baudrate

Name	UART Address	CANopen Address	Modbus Address	Properties	Description
Device ID	2F8001	2F800108	0x6001	Unsigned8 RW	Drive station No.
CAN Baudrate	2F8002	2F800208	0x6002	Unsigned8 RW bps	CAN baudrate setting 100: 1M 50: 500k 25: 250k 12: 125k 10: 100k 5: 50k 2: 20k It needs to reboot drive for valid
UARTBaud rate	2F8003	2F800308	0x6003	Unsigned8 RW bps	UART baudrate setting 0: 4800 1: 9600 2: 14400



					3: 19200	)
					4: 38400	)
					5: 56000	)
					6: 57600	)
					7: 11520	00
					It needs to r	eboot drive
					for valid	
					RS485	baudrate
	050004	004	0x6004		setting	
					48: 4800	)
				Unsigned16 RW	96: 9600	)
RS485Bau					192: 1920	00
drate	20004	2F000410			384: 3840	00
				phs	576: 5760	00
					1152: 1152	200
					It needs to r	eboot drive
					for valid	
Software_V	100400	400400		Visible	Drive Cettur	
ersion	100A00	100A00		String	Drive Softwa	are version

#### 9.1.7 Motor Status

Name	UART Address	CANopen Address	Modbus Address	Properties	Description
Actual	606300	60630020	0v7630	Integer32P	Motor current
Position	000300	00030020	077050	Integer521	position
Actual	606000	6060000	0,7600	Integer22P	Actual speed after
Speed	000000	00000020	027600	Integerszk	filter
Actual Current_q	607800	60780010	0x7780	Integer16R	Actual current

### 9.1.8 Speed Mode

Name	UART Addres	CANopen Address	Modbus Address	Properties	Description
Target Speed	60FF00	60FF0020	0x8C00	Integer32 RW rpm	Target speed for speed mode
Profile Acceleration	608300	60830020	0x7930	Unsigned32 RW rps/s	Accelerationforacceleratingfromcurrentspeedtospecificspeed
Profile Deceleration	608400	60840020	0x7940	Unsigned32 RW	Deceleration for decelerating from



		rps/s	current	speed	to
			specific s	speed	

#### 9.1.9 Position Mode

Name	UART	CANopen	Modbus	Proportios	Description
	Address	Address	Address	Fropencies	Description
Target	607A00	607A0020	0x77A0	Integer32	Target position for
Position				RW	position mode
Profile Speed	608100	60810020	0x7910	Unsigned32 RW rpm	Speed for position mode

## 9.1.10 Torque Mode

Name	UART Address	CANopen Address	Modbus Address	Properties	Description
TargetTor que%	607100	60710010	0x7710	Integer16 RW %	Target torque/Rated torque*100%
MAX_Sp eed_Limi t_rpm	608000	60800010	0x7900	Unsigned16 RW rpm	Maximum speed limit for torque mode

## 9.1.11 Speed Loop Parameter

Name	UART Address	CANopen Address	Modbus Address	Properties	Description
Kvp 0	60F901	60F90110	0x8601	Unsigned16 RW	Speed loop kp
Kvi 0	60F902	60F90210	0x8602	Unsigned16 RW	Speed loop ki
Notch_N	60F903	60F90308	0x8603	Unsigned8 RW	Notch filter frequency setting for spped loop BW=Notch_N*10+100[ Hz]
Notch_C ontrol	60F904	60F90408	0x8604	Unsigned8 RW	Notch filter control for speed loop
Speed_F b_N	60F905	60F90508	0x8605	Unsigned8 RW	Speed feedback filter for speed loop BW=Speed_Fb_N*20+ 100[Hz]
Speed_F b_Mode	60F906	60F90608	0x8606	Unsigned8 RW	Speed feedback mode selection



					Bit 0: Direct feedback
					Bit 1: Observer
					feedback
					Bit 2: Low-pass
					feedback order, 0 = 2nd
					order, 1 = 1st order
					Bit 4: Speed command
					filter, $0 = Disabled$ , $1 =$
					Enabled
					Default: 0, which means
					2nd order low-pass filte
Speed					
loop Kvb	60F907	60F90720	0x8607	Integer32	Speed loop Kvb
shreshol				RW	shreshold
d					
Speed				Integer32	Speed loop integral
Loop	60F908	60F90820	0x8608	RW	gain limit
Kvi limit					5
Speed	60F909	60F90910	0x8609	Unsigned16	Speed loop Kvb
loop Kvb				RW	
Speed_r				Integer32	
each_wi	60F90A	60F90A20	0x860A	RW	Speed error window
ndow					
Speed_lo				Unsigned16	
SS	60F91C	60F91C10	0x861C	RW	Time for speed-loss
judgeme				ms	judgement
nt time				•	
Notch_filt	60F914	60F91410	0x8614	Integer16	Notch filter input
er_input				R	······

## 9.1.12 Position Loop Parameter

Name	UART Address	CANopen Address	Modbus Address	Properties	Description	
Kvp 0	60FB01	60FB0110	0x8801	Integer16 RW	Position loop kp	
K_Speed_ FF	60FB02	60FB0210	0x8802	Integer16 RW	Position feedforward	loop
K_Acceler ation_FF	60FB03	60FB0310	0x8803	Integer16 RW	Position acceleration feedforward	loop
Smoothing filter	60FB05	60FB0508	0x8805	Unsigned8 RW	Smoothing parameter adjustm	filter nent



Max_Follo wing_Error	606500	60650020	0x7650	Unsigned32 RW	If following error is greater than 6065h,and the time is greater than 6066h, drive will appear following error alarm
Position_R each_Win dow	606700	60670020	0x7670	Unsigned32 RW	The difference between the position command and the actual position is less than Position_Reach_Wind ow, and the time reaches the Position_Reach_Wind ow_Time, it is considered that the position has arrived.
Position following error	60F400	60F40020	0x8100	Integer32 R	Position following error

### 9.1.13 Current Loop Parameter

Nome	UART	CANopen	Modbus	Drepartica	Description
Name	Address	Address	Address	Properties	Description
Torgot Cu				Unsigned16	Maximum value
rront Limit	607300	60730010	0x7730	RW	Of current
nent_Linit				Ар	command
Кср	60F601	60F60110	0x8301	Unsigned16 RW	Current loop kp
Kci	60F602	60F60210	0x8302	Unsigned16 RW	Current loop ki
Current_C				Unsigned16	Current
ompensati	60F603	60F60310	0x8303		compensation
on_Factor					factor
Voltage_F				Integer16	Voltage
eedback_	60F604	60F60410	0x8304	RW/	feedback factor
Factor				1	TEEODACK TACIOT
Internal_M					Drive internal
axTorque_	60F60C	60F60C10	0x830C	Integer16R	maximum torque
Limit					limit
Drive_Actu	60F60D	60F60D10	0x830D	Unsigned16R	Actual data of iit



al_iit				%	Protection for
					drive
				Linging ad 16D	Maximum data
	60F60E	60F60E10	0x830E	Unsigned for	of iit Protection
IVIAX			Ар	Ар	for drive
Motor Act				Lineigned16D	Actual data of iit
	60F60F	60F60F10	0x830F	Unsigned ToR	Protection for
ual_lit				%	motor
Motor iit				Unsigned16	Maximum data
	60F610	60F61010	0x8310	R	of iit Protection
IVIAX				Ар	for motor

## 9.1.14 Homing Mode

Name	UART Address	CANopen Address	Modbus Address	Properties	Description
Homing Method	609800	60980008	0x7C00	Integer8 RW	Methodforhoming,refertochapter 6 for details
Homing _Speed _Switch	609901	60990120	0x7D01	Unsigned32 RW rpm	Speed for searching home switch or position limit switch
Homing _Speed _Zero	609902	60990220	0x7D02	Unsigned32 RW rpm	Speed for searching home position or zero position
Homing _Power _On	609903	60990308	0x7D03	Unsigned8 RW	Everytime execute homing mode once when driver power on
Homing _Curre nt_Max	609904	60990410	0x7D04	Integer16 RW Ap	Maximum current during homing
Home_ Offset_ Mode	609905	60990508	0x7D05	Unsigned8 RW	Home offset mode control 0: Run to home offset position 1: Run to home trigger position.The actual position will be -Home_Offset
Homing _Index _Blind	609906	60990608	0x7D06	Unsigned8 RW	When the homing mode is used simultaneously with the limit/home switch and index signal,



					ignore the detected
					index signal during
					homing process within
					the blind area after
					encountering the
					switch signal.
					0: 0 revolutions
					1: 0.25 revolutions
					2: 0.5 revolutions
					Default: 0.
					When this value is set
					to 1, the homing
					process will offset this
					value to 0 or 2 based
					on the position of the
					index signal relative to
					the switch signal. After
					mechanical fixation,
					this parameter needs
					to be saved, and after
					mechanical changes,
					it can be reset to 1.
Homing				Unsigned32	
Accel	609A00	609A0020	0x7E00	RW	Acceleration for
eration				rps/s	homing

### 9.1.15 Error States

Namo	UART	CANopen	Modbus	Properties	Description
Name	Address	Address	Address		Description
Error_S tates	260100	26010010	0x5A00	Unsigned16 R	Error states bit0: Refer to 26020010 bit1 : Encoder ABZ connection alarm/communication encoder disconnection error bit2 : Encoder UVW connection alarm/communication encoder multi-turn error bit3 : Encoder count error/communication encoder CRC error



					bit4: Drive temperature
					too high
					bit5 : Bus voltage too
					high
					bit6: Bus voltage too
					low
					bit7: Drive output short
					circuit
					bit8 : Brake resistor
					exception
					bit9. Following error too
					large
					hit10. Logic power low
					voltage
					bit11: Motor or drive iit
					fault
					bit12: Speed follow error
					bit13 : Motor
					temperature too high
					bit14: Motor excitation
					error/other errors of the
					communication encoder
					(please refer to
					30030208) bit15 :
					Eeprom alarm
					Error states 2
					bit0 : Current sensor
					exception
					bit1: Drive output short
					circuit
					bit2: Homing error
					bit3 : Motor lack of
					phase
<b>E</b>					bit4: Motor configuration
Error_S	260200	26020010	0x5B00	Unsigned16	error
tates_2				R	bit5: User lit fault
					bit6: Reserved
					bit7: Reserved
					bit8: Pre-enable error
					bit9: Positive limit error
					bit10 : Negative limit
					error
					bit11: Pulse frequency
					too high



		bit12: E	Bus offli	ne error
		bit13: F	Full clo	sed-loop
		encoder		counting
		direction	error	
		bit14 :	Main	encoder
		connecti	ion erro	or
		bit15 :	Main	encoder
		counting	error	

## 9.1.16 Stop Mode

Name	UART	CANopen	Modbus	Properti	Description
	Address	Address	Address	es	Description
Param eter name: Fast stop mode	605A00	605A0010	0x7510	Integer16 RW	Fast stop mode 0: Uncontrolled stop 1: Stop with deceleration(0x6084),moto r will unlock the shaft at zero speed 2: Stop with quick deceleration(0x6085), motor will unlock the shaft at zero speed 5 : Stop with deceleration(0x6084),moto r will lock the shaft at zero speed 6: Stop with quick deceleration(0x6085), motor will lock the shaft at zero speed
Shutdo wn stop mode	605B00	605B0010	0x7520	Integer16 RW	Shutdown stop mode (Control word changes from 0x0F to 0x06) 0: Uncontrolled stop 1: Stop with deceleration(0x6084),moto r will unlock the shaft at zero speed 2: Stop with quick deceleration(0x6085), motor will unlock the shaft at zero speed
Inhibit	605C00	605C0010	0x7530	Integer16	Inhibit stop mode (Control



stop				RW	word changes from 0x0F to
mode					0x07)
					0: Uncontrolled stop
					1: Stop with
					deceleration(0x6084),moto
					r will unlock the shaft at
					zero speed
					2: Stop with quick
					deceleration(0x6085),
					motor will unlock the shaft
					at zero speed
Pause mode	605D00	605D0010	0x7540	Integer16 RW	Pause mode
					1: Stop with
					deceleration(0x6084),moto
					r will lock the shaft at zero
					speed
					2: Stop with quick
					deceleration(0x6085),
					motor will lock the shaft at
					zero speed
	605E00	605E0010	0x7550	Integer16 RW	Alarm emergency stop
Alarm stop mode					mode
					0: Stop immediately
					1: Stop with
					deceleration(0x6084),moto
					r will unlock the shaft at
					zero speed
					2: Stop with quick
					deceleration(0x6085),
					motor will unlock the shaft
					at zero speed

### 9.2 Unit Conversion

Note:

The 'N' in the unit conversion formulas represents the value before conversion.

When writing parameters, firstly you need to convert the parameter value to the internal unit (DEC), and then convert it to hexadecimal for writing.

The position unit does not require conversion.

For example:

Assuming the target speed is 500 rpm and the feedback resolution is 131072, then 500 rpm is converted to DEC as follows:

rpm -> DEC = N / 1875 * 512 * feedback resolution

DEC = 500 / 1875 * 512 * 131072 * 1000 / 1000 = 17895697

Converted to hexadecimal it is 0111 1111, then write the hexadecimal number into the


corresponding address of the target speed.

#### 9.2.1 Current Conversion Formula

For SVD4812 driver, the maximum current (DEC) = 450For SVD4822 driver, the maximum current (DEC) = 100For SVD4835 driver, the maximim current (DEC) = 160

DEC -> Ap = N / 2048 * [maximum current (DEC)] / 10 Ap -> DEC = N * 2048 / [maximum current (DEC)] * 10 DEC -> Arms = N / 2048 * [maximum current (DEC)] / 10 / 1.414 Arms -> DEC = N * 2048 / [maximum current (DEC)] * 10 * 1.414

### 9.2.2 Speed Conversion Formula

DEC -> rpm = N * 1875 / 512 / feedback resolution rpm -> DEC = N / 1875 * 512 * feedback resolution

### 9.2.3 Acceleration (Deceleration) Conversion Formula

DEC -> rps/s = N * 1000 * 4000 / 65536 / feedback resolution rps/s -> DEC = N / 1000 / 4000 * 65536 * feedback resolution

### 9.2.4 Torque Conversion Formula

DEC->%=N/10 %->DEC=N*10



## **Chapter 10 UART Communication**

This model of the driver only supports one-to-one mode for UART communication through the CN2 port. For details, please refer to Chapter 4 System Interface and Wiring.

## **10.1 UART Communication Format**

The default baud rate is 115200bps, which can be modified through the index address 2F8003.

The UART communication parameters are: 115200, 8, N, 1

That is, the baud rate is fixed at 115200bps, the data bits are 8 bits, no parity check, and 1 stop bit.

UART Communication Protocol

This drive's UART communication follows a strict master-slave station protocol. The master station/supervisory controller sends one frame or multiple frames of data to drive, and drive will respond with one frame or multiple frames of corresponding data after receiving the correct data.

Devic	Comma	Object address			Data area				Chock
e ID	nd	Object	auuress		Dala al	CIECK			
Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10
Devic	Comma	Index	Index		Low—		Chook		
e ID	nd	muex			Such a	Such as 0x01 means 01 00 00 00			

The UART communication protocol adopts a fixed ten-byte format:

Device ID: Set by the DIP switch, for details, refer to Chapter 4 (universal station number is 127).

Command: Take different values according to the user's purpose, which can refer to the list below.

Object address: Known through the object list, where the index (Byte3-Byte4) is also from low to high.

Data area: Used to store the sent data or the received data.

If the four bytes of the data area are 0F 65 77 83, then the correct HEX format is 83 77 65 0F.

Check: The check bit, the value is the sum of the previous nine bytes taken inversely, and then get the lower byte of the result.

The specific definition of the command is as follows:

(1) Read command, the host reads the data of the relevant object address of drive

Host sends Drive replies		Description
0x40	0x4f	The effective data of the object is Byte6
0x40	0x4b	The effective data of the object is Byte6-Byte7
0x40	0x43	The effective data of the object is Byte6-Byte9



0x40	0x80	Check error, the error word is included in Byte6-Byte9

Host sends	Drive replies	Description		
0,22	0x60	The effective data of the object is Byte6-Byte9		
0x23	0x80	Error, Byte6-Byte9 contains error code		
Ovah	0x60	The effective data of the object is Byte6-Byte7		
UX2D	0x80	Error, Byte6-Byte9 contains error code		
001	0x60	The effective data of the object is Byte6		
UXZI	0x80	Error, Byte6-Byte9 contains error code		

(2) Write command, the host writes data to the relevant object address of drive.

## **10.2 UART Communication Examples**

The following examples set Device ID 01 and Baud rate 115200 as default.

### 10.2.1 Speed Mode

Speed conversion formula

The value of the speed = N / 1875 * 512 * motor encoder resolution (feedback resolution), where N is the rotation speed (rpm)

Here, taking a 17-bit motor as an example, the motor encoder resolution = 131072 Target speed 10 rpm is converted to decimal as 357913, hexadecimal as 57619 Target speed -10 rpm is converted to decimal as -357913, hexadecimal as FFFA 89E7

Profile acceleration conversion formula

The value of the acceleration=N/1000/4000*65536*motor encoder resolution (feedback resolution) ,where N is acceleration(rps/s).

Motor encoder resolution is as above.

Profile acceleration 50rps/s is converted to decimal as 107374, hexadecimal as 1A36E.

Object address	Name	Data Type	Setting Value	Message	Note	l
606000	Operation mode	Integer8	3	01 2F 60 60 00 03 00 00 00 0D	Operation mode is as 3	on set
60FF00	Target speed	Integer32	10rpm	01 23 FF 60 00 19 76 05 00 E9	Target speed set 10rpm	is as
			-10rpm	01 23 FF 60 00 E7 89 FA FF 14	Target speed set -10rpm	is as
608300	Profile	Unsigned	50rps/s	01 23 83 60 00 6E A3 01	Profile	



	acceleration	32		00 E7	acceleratio
					n is set as
					50rps/s
					Profile
000400	Profile	Unsigned		01 23 84 60 00 6E A3 01	deceleratio
608400	deceleration	32	50rps/s	00 E6	n is set as
					50rps/s
					Controlwor
					d is set as
604000	Control word		F	01 2B 40 00 00 0F 00 00	F to lock
		10		00 25	the motor
					axis

According to the above operations, the motor will accelerate to 10 rpm or -10 rpm with profile acceleration of 50 rps/s. If the target speed is written to 0 again, the motor will decelerate to 0 with profile deceleration of 50 rps/s.

## **10.2.2 Absolute Position Mode**

The profile speed is converted in the same way as the speed mode. 50 rpm can be converted to decimal as 1789569, hexadecimal as 1B4E81. Target position 10000 inc is converted to hexadecimal as 2710. If it is -10000 inc, it is converted to hexadecimal as FFFFD8F0.

Object	Name	Data Type	Setting	Message	Note
606000	Operation mode	Integer8	1	01 2F 60 60 00 01 00 00 00 0F	Operation mode is set as 1
608100	Profile speed	Unsigned32	50 rpm	01 23 81 60 00 81 4E 1B 00 11	Profile speed is set as 50 rpm
607A00	Target position	Integer32	10000 inc	01 23 7A 60 00 10 27 00 00 CB 01 23 7A 60 00 F0 D8	Target position is set as 10000 inc Target position is
			inc	FF FF 3C	set as -10000 inc
604000	Control word	Unsigned16	0x2F->0x 3F	01 2B 40 60 00 2F 00 00 00 05 01 2B 40 60 00 3F 00 00	Control word is set ans 2F and then



		00 F5	changed
			to 3F

According to the above operations, the motor will run to the position of 10000 inc or -10000 inc at a speed of 50 rpm.

### **10.2.3 Relative Position Mode**

The profile speed is converted in the same way as the speed mode. 50 rpm can be converted to decimal as 1789569, hexadecimal as 1B4E81. Target position 10000 inc is converted to hexadecimal as 2710. If it is -10000 inc, it is converted to hexadecimal as FFFFD8F0.

Object address	Name	Data Type	Setting Value	Message	Note
606000	Operation mode	Integer8	1	012F60 600001 00 00 000F	Operation mode is set as 1
608100	Profile speed	Unsigned32	50rpm	012381 600081 4E 1B 0011	Profile speed is set as 50 rpm
	Target position	Integer32	10000 inc	01237A 600010 27 00 00CB	Target position is set as 10000 inc
607A00			-10000in c	01 23 7A 60 00 F0 D8 FF FF 3C	Target position is set as -10000 inc
604000	Control word	Unsigned16	0x4F->0 x5F	01 2B 40 60 00 4F 00 00 00 E5 01 2B 40 60 00 5F 00 00 00 D5	Control word is set ans 4F and then changed to 5F

According to the above operations, the motor will move 10000 inc on the original position at a speed of 50 rpm in the positive direction or the negative direction of 10000 inc. The relative position mode and the absolute position mode have similar operation methods. The relative position mode moves 10000 inc on the original position, while the absolute position mode moves the motor to the 10000 inc position.



## 10.2.4 Torque Mode

Torque conversion formula The value filled in (decimal) = N * 10 If set to 10%, after conversion it becomes 100, hexadecimal is 64 The MAX_Speed_Limit is converted in the same way as the speed mode. 5000 rpm can be converted to decimal as 178,956,970, hexadecimal as AAAAAAA

Object address	Name	Data Type	Setting Value	Message	Note
606000	Operatio nmode	Integer8	4	01 2F 60 60 00 04 00 00 00 0C	Operation mode is set as 4
607100	Target_T orque%	Unsigned32	10	01 2B 71 60 00 64 00 00 00 9F	Target_Torq ue% is set as 10% ( 10% of rated torque)
607F00	MAX_Sp eed_Limit	Unsigned32	5000 rpm	01 23 7F 60 00 AA AA AA 0A 58	MAX_Speed _Limit is set as 5000rpm
604000	Control word	Unsigned16	F	01 2B 40 60 00 0F 00 00 00 25	Control word is set as F

According to the above operations, the motor will operate at 10% of the rated torque.

## 10.2.5 Homing Mode

Homing_Speed_Switch and Homing_Speed_Zero is converted in the same way as the speed mode. 50 rpm can be converted to decimal as 1,789,569, hexadecimal as 1B4E81

Object address	Name	Data Type	Settin g Value	Message	Note
606000	Opeatio nmode	Integer8	6	01 2F 60 60 00 06 00 00 00 0A	Operation mode is set as 6
609901	Homing _Speed _Switch	Unsigned32	50rpm	01 23 99 60 01 81 4E 1B 00 F8	Homing_Sp eed_Switch is set as 50rpm
609902	Homing	Unsigned32	50rpm	01 23 99 60 02 81 4E 1B	Homing_Sp

The Homing Method 17 is converted to hexadecimal as 11



	_Speed			00 F7	eed_Zero is
	_Zero				set as
					50rpm
	Homing				Homing
609800	Homing	Integer8	17	01 2F 96 00 00 11 00 00	Method is
	Method			00.07	set as 17
					Control
					word is set
604000	Control	Unsigned 16	F>	00 25	ans F and
004000	word	Unsigned16	1F		then
					changed to
					1F

According to the above operations, the motor will search for the home position according to the homing method 17, with homing_speed_switch of 50 rpm and homing_speed_zero of 50 rpm.

#### Note:

Pay attention to the unit conversion, and detailed can refer to unit conversion behind Chapter 6 Common Object List.

#### Communication error code table

Serial number	Error code	Description
1	0x05040001	Invalid command
2	0x06010001	Write-only parameter
3	0x06010002	Read-only parameter
4	0x06020000	Invalid index
5	0x06040041	Unable mapping
6	0x06060000	Device hardware failure
7	0x06070010	Data length error
8	0x06070013	Object data is too long
9	0x06070013	Object data is too short
10	0x06090011	Invalid sub-index
11	0x06090030	Invalid value
12	0x06090031	Value is too high
13	0x06090032	Value is too low
14	0x0800000	General error
15	0x08000021	Incorrect control word
16	0x08000022	Incorrect status word
17	0x08000023	No object dictionary



## **Chapter 11 RS485 Communication**

## 11.1 RS485 Communication Hardware Introduction

This model of the driver uses the CNA1(IN) port and CNB1(OUT) for RS485 communication. For specific details, please refer to Chapter 4 System Interface and Wiring.

## 11.2 RS485 Communication Format

The RS485 baud rate of this machine can be set through the AMPS software, or modified through the command.

	485								
Index	Sub	Sub Name Data Type							
2F80	04	RS485_Baudrate	Unsigned16	RWS					
baudrate o 48: 4800 96: 9600 192: 1920 384: 38400 576: 57600 1152: 1152 need reboo	f RS485 0 0 0 200 0 0 0 0								

Figure 11-1 RS485 Baud Rate Related Settings

#### **11.2.1 Communication Protocol**

This model supports the Modbus RTU communication protocol, and its internal objects are discontinuous 16-bit data registers. The message format is as follows:

Station	Function	Pata area	Chock bit	
No.	code	Data alea	Check Dil	
Byte1	Byte2	ByteN	Byte(N+1)	Byte(N+2)

Station No.: The RS485 address of drive, determined by the SW1-SW4 of the drive's DIP switch S1, for details, refer to Chapter 4 (universal station No. is 127).

Function code: Take different values according to the user's purpose, which can refer to the list below.

Data area: Stores the index number and operation-related data.

Check bit: Used for verification during communication, this model of the driver uses Modbus CRC16 check by default.



## **11.2.2 Common Function Introduction**

#### Read Data Register (0x03)

Send message:

Device ID	Function code	Modbus add	dress	Number of registers to read		CRC
		High byte	Low byte	High byte	Low byte	
1 byte	03	1 byte	1 byte	1 byte	1 byte	2 byte

Reply message:

Dovice Eurotion	Number	of	Register da	ta		
ID	code	bytes returned		High byte	Low byte	CRC
1 byte	03	1 byte		1 byte	1 byte	2 byte

Note:

If there is a response error such as an address does not exist, the function code returned is 0x81.

#### Write Single Data Register (0x06)

Device ID	Function code	Modbus address		Number of registers to read		CRC
		High byte	Low byte	High byte	Low byte	
1 byte	06	1 byte	1 byte	1 byte	1 byte	2 byte

Note:

If the object is written successfully, the original message is returned.

#### Write Multiple Holding Registers (0x10)

Device	Function	Modbus	Data (word)	length	Number	Low d	ata	High o	data	CRC
ID	code	address	High	Low	to write	High	Low	High	Low	URU
			byte	byte		byte	byte	byte	byte	
1 byto	10	2 byto	1 byto	1	1 byto	1	1	1	1	2
Tuyle	10	2 Dyte	Toyle	byte	Tuyle	byte	byte	byte	byte	byte

Reply message:

Device	Function	Modbus	Data length (word)		CPC
ID	code	address	High byte Low byte		CRC
1 byte	10	2 byte	1byte	1 byte	2 byte

Note:

If there is an illegal operation such as writing to a non-existent address or writing to read-only data, the function code returned is 0x90.

## 11.3 RS485 Communication Examples

The following examples take station number 1 as an example.

For details on the conversion of parameters such as target speed, please refer to the UART communication example or Chapter 6.



## 11.3.1 Read Actual Position and Response Message

The Modbus address for the actual position is 0x7630 Then, the message sent to read the actual position is: 01 03 76 30 00 02 DE 4C The response message is: 01 03 04 2B 60 71 26 56 43

01 03 76 30 00 02 DE 4C

01: Station No.

03: Function code

76 30: Modbus address of actual position

00 02: Number of registers to read, 2word=32bit

DE 4C: Modbus CRC16 check bit

01 03 04 2B 60 71 26 56 43

01: Station No.

03: Function code

04: Number of bytes returned

2B 60 71 26: The returned data, converted to hexadecimal is 7126 2B60, converted to decimal is 1,898,326,880, that is, the actual position is 1,898,326,880 inc 56 43: Modbus CRC16 check bit

## 11.3.2 Speed Mode

The value of the speed (decimal number)=N/1875*512* motor encoder resolution (feedback resolution), where N is the rotation speed (rpm)

Here, taking a 17-bit motor as an example, the motor encoder resolution is 131072 Target speed is 100 rpm, after conversion, the decimal is 3,579,139, and the hexadecimal is 36 9D03

Modbu s addres s	Name	Data type	Setting value	Message	Descripti on
0x7600	Operation mode	Integer8	3	01 06 76 00 00 03 D3 83	Operation mode is set as 3
0x8C00	Target speed	Integer32	100rpm	01 10 8C 00 00 02 04 9D 03 00 36 98 D3	Target speed is set as 100rpm
0x7930	Profile acceleration	Unsigned32	50rps/s	01 10 79 30 00 02 04 A3 6E 00 01 7D 70	Profile accelerati on is set as 50rps/s



	Drofilo				Profile
0x7940	Prome		E0rna/a	01 10 79 40 00 02 04 A3	decelerati
087940	n	Unsigneusz	501p5/5	6E 00 01 7A 54	on is set
	11				as 50rps/s
					Controlwo
	Control	Unsigned16	F		rd is set
0x7400	word			3E	as F to
	word				lock the
					motor axis

- 01 06 76 00 00 03 D3 83
- 01: Station No.
- 06: Write signal data regsiter
- 76 00: RS485 address for operation mode
- 00 03: Set operation mode as 3
- D3 83:Modbus CRC16 check bit
- 01 10 8C 00 00 02 04 9D 03 00 36 98 D3
- 01: Station No.
- 10: Write multiple holding regsiter
- 8C 00:RS485 address for target speed
- 02: Write data length of 2 WORD(4 Bytes)
- 04: Writie 4 bytes of data

9D 03 00 36 : The data to write into register, converted to hexadecimal is 369D03, converted to decimal is 3579139, corresponding to speed 100 rpm. More details of conversion formula refer to UART communication example or object list.

Profile speed, profile deceleration and controlword are similar to example above.

#### 11.3.3 Absolute Position Mode

50 rpm can be converted to decimal as 1,789,569, and hexadecimal as 1B 4FAD.

Modbus	Namo	Data typo	Setting	Mossago	Descripti
address	Name	Data type	value	Messaye	on
	Operation				Operation
0x7600	Operation	Integer8	1	01 06 76 00 00 01 52 42	mode is
	mode				set as 1
					Profile
0,7010	Profile	Lineigned 22	FOrem	01 10 79 10 00 02 04 4F	speed is
027910	speed	Unsigned32	Solbin	AD 00 1B 3A 0F	set as 50
					rpm



0x77A0	Target position	Integer32	10000 inc	01 10 77 A0 00 02 04 27 10 00 00 B1 54	Target position is set as 10000 inc
0x7400	Control word	Unsigned16	0x2F-> 0x3F	01 06 74 00 00 2F D3 E6 01 06 74 00 00 3F D2 2A	Control word is set ans 2F and then changed to 3F

The absolute position mode is similar to the relative position mode in operation, and is not introduced here.

The proile speed is calculated in the same way as the above speed mode, and here we introduce the calculation of the target position:

If the target position is 10000 inc, it can be directly converted to hexadecimal as 2710, without other conversions.

## 11.3.4 Torque Mode

Torque conversion formula

The value filled in (decimal) = N * 10

If set to 10%, after conversion it becomes 100, hexadecimal is 64

The MAX_Speed_Limit is converted in the same way as the speed mode.

5000 rpm can be converted to decimal as 178,956,970, hexadecimal as AAAAAAA

Modbus	Name	Data Type	Setting	Message	Descripti
0x7600	Operatio nmode	Integer8	4	01 06 76 00 00 04 92 41	Operation mode is set as 4
0x7710	Target_T orque%	Unsigned32	10	01 06 77 10 00 64 92 50	Target_Tor que% is set as 10% (10% of rated torque)
0x77F0	MAX_Sp eed_Limit	Unsigned32	5000 rpm	01 10 77 F0 00 02 04 AA AA 0A AA 38 3E	MAX_Spe ed_Limit is set as 5000rpm
0x7400	Control word	Unsigned16	F	01 06 74 00 00 0F D2 3E	Control word is set as F

According to the above operations, the motor will operate at 10% of the rated torque.



## 11.3.5 Homing Mode

Modbus	Nama	Data Tura	Setting	Massaga	Descripti
address	name		Value	Message	on
	Operation				Operation
0x7600	mode	Integer8	6	80	mode is
	mode			00	set as 6
	Homing				Homing_S
0v7D01	Speed S	Linsigned32	50rpm	01 10 7D 01 00 02 04	peed_Swit
0,7,001	witch	Unsignedoz	Joipin	4F AD 00 1B C8 0F	ch is set
	WITCH				as 50rpm
	Homing				Homing_S
0x7D02	Speed 7	Linsigned32	50rpm	01 10 7D 02 00 02 04	peed_Zer
077002	opeeu_z	Unsignedoz	Joipin	4F AD 00 1B 88 1A	o is set as
	610				50rpm
	Homing				Homing
0x7C00	Method	Integer8	17	56	Method is
	Method			50	set as 17
					Control
					word is set
0x7400	Control	Linsigned16	F-\1F	01 06 74 00 00 1F D3	ans F and
	word	Chargeleard	1->1	F2	then
					changed
					to 1F

50 rpm can be converted to decimal as 1,789,569, hexadecimal as 1B4FAD

According to the above operations, the motor will search for the home position according to the homing method 17, with homing_speed_switch of 50 rpm and homing_speed_zero of 50 rpm.

## 11.3.6 RS485-PDO Mode(Read Multiple Parameters)

This mode is applicable to this model, for other models, refer to the corresponding manual for details. The specific steps are as follows:

Step 1: Set the TPDO1 station number to a specified address (which should not conflict with the Modbus address already used), and at the same time, set the TPDO1 mapping to the index address that needs to be returned (the same address as the CAN communication).

Following figure is the example of mapping to actual position(60630020) and actual speed(606C0020).



Froup			2.3/0/101						
roup	N	Index	Туре	Name	Set Value	Current Value	Uint	^	^
peration	1	180001	Unsigned32	TX1_ID	9020	9020	HEX		
y Loop	2	180002	Unsigned8	TX1_Transmission		254	DEC		
Loop	3	180003	Unsigned16	TX1_Inhibit_Time		10	DEC		
etting	4	180005	Unsigned16	TX1_Event timer		0	DEC		
s Mode	5	1A0000	Unsigned8	Group_TX1_PDO	0	0	DEC		
	6	1A0001	Unsigned32	TX1_PDO1	60630020	60630020	HEX		
	7	1A0002	Unsigned32	TX1_PDO2	606c0020	606c0020	HEX		
fig	8	1A0003	Unsigned32	TX1_PDO3		0	HEX		
oup	9	1A0004	Unsigned32	TX1_PDO4		0	HEX		
	10	1A0005	Unsigned32	TX1_PDO5		0	HEX		
	11	1A0006	Unsigned32	TX1_PDO6		0	HEX		
	12	1A0007	Unsigned32	TX1_PDO7		0	HEX		
	13	1A0008	Unsigned32	TX1_PDO8		0	HEX		
	14	180101	Unsigned32	TX2_ID		281	HEX		
	15	180102	Unsigned8	TX2_Transmission		254	DEC		
	16	180103	Unsigned16	TX2_Inhibit_Time		10	DEC		
	17	180105	Unsigned16	TX2_Event timer		0	DEC		
	18	1A0100	Unsigned8	Group_TX2_PDO		0	DEC		
	19	1A0101	Unsigned32	TX2_PDO1		0	HEX		
	20	1A0102	Unsigned32	TX2_PDO2		0	HEX		
	21	1A0103	Unsigned32	TX2_PDO3		0	HEX		
	22	1A0104	Unsigned32	TX2_PDO4		0	HEX		
	23	1A0105	Unsigned32	TX2_PDO5		0	HEX		
	24	1A0106	Unsigned32	TX2_PDO6		0	HEX		
	25	1A0107	Unsigned32	TX2_PDO7		0	HEX		
	20	140100	Undersed 22	TV3 0000		0	LIEV	~	~

#### Figure 11-2 Reading Multiple Parameter

Step	2.	Send	the	message	the	format	is	as follows:
Otop	<u> </u>	Conia	uio	mooougo,		ionnat	10	uo 10110110.

Device ID	Function code	Object Mod	bus address	Number of read	CRC	
		High byte	Low byte	High byte	Low byte	
1 byte	03	1 byte	1 byte	1 byte	1 byte	2 byte

Here we send the message: 01 03 90 20 00 04 68 C3 Response message: 01 03 08 29 DC 04 12 78 80 00 1D 2A AE

- 01 03 90 20 00 04 68 C3
- 01: Station No.
- 03: Function code- read
- 90 20: Address in RS485-PDO mode
- 00 04: Number of registers to read
- 68 C3: Check bit

01 03 08 29 DC 04 12 78 80 00 1D 2A AE

- 01: Station No.
- 03: Function code- read
- 08: Number of bytes to read

29 DC 04 12: Indicates the actual position (TPDO mapping 1), the hexadecimal number is 412 29DC, and the decimal number is 68 299 228, that is, the current position is 68 299 228

78 80 00 1D: Indicates the actual speed (TPDO mapping 2), the hexadecimal number is 1D 7880, and the decimal number is 1 931 392



## 11.3.7 RS485-PDO Mode (Write Multiple Parameters)

The specific operation steps are the same as above. Here we take the example of writing the speed mode to the driver.

As shown in the figure below, it is mapping to target speed (60FF0020), working mode (60600008), and control word (60400010).

Object Dictionary Par	amete	r List 🛛 🗙	Digital IO F	unctions					-
🖃 芦 Parameter Group									
🕀 🍋 Default Group	Ν	Index	Туре	Name	Set Value	Current Value	Uint	^	
Basic Operation	1	140001	Unsigned32	RX1_ID	9020	9020	HEX		
Velocity Loop	2	140002	Unsigned8	RX1_Transmission		254	DEC		
- 🕷 Current Loop	3	140003	Unsigned16	RX1_Inhibit_Time		10	DEC		
Motor Setting	4	160000	Unsigned8	Group_RX1_PDO		0	DEC		
Din Spd/Pos Mode	5	160001	Unsigned32	RX1_PDO1	60ff0020	60ff0020	HEX		
- 💼 Pulse Mode	6	160002	Unsigned32	RX1_PDO2	60600008	60600008	HEX		
- Contraction of the second se	7	160003	Unsigned32	RX1_PDO3	60400010	60400010	HEX		
- BPDO Config	8	160004	Unsigned32	RX1_PDO4		0	HEX		
Custom Group	9	160005	Unsigned32	RX1_PDO5		0	HEX		
	10	160006	Unsigned32	RX1_PDO6		0	HEX		
	11	160007	Unsigned32	RX1_PDO7		0	HEX		
	12	160008	Unsigned32	RX1_PDO8		0	HEX		
	13	140101	Unsigned32	RX2_ID		301	HEX		
	14	140102	Unsigned8	RX2_Transmission		254	DEC		
	15	140103	Unsigned16	RX2_Inhibit_Time		10	DEC		
	16	160100	Unsigned8	Group_RX2_PDO		0	DEC		
	17	160101	Unsigned32	RX2_PDO1		0	HEX		
	18	160102	Unsigned32	RX2_PDO2		0	HEX		
	19	160103	Unsigned32	RX2_PDO3		0	HEX		
	20	160104	Unsigned32	RX2_PDO4		0	HEX		
	21	160105	Unsigned32	RX2_PDO5		0	HEX		
	22	160106	Unsigned32	RX2_PDO6		0	HEX		
	23	160107	Unsigned32	RX2_PDO7		0	HEX		
	24	160108	Unsigned32	RX2_PDO8		0	HEX		
	25	140201	Unsigned32	RX3_ID		401	HEX		
	26	140202	Unsignado	DV2 Transmission		264	DEC	· · · · · · · · · · · · · · · · · · ·	

Figure 11-3 Write Multiple Parameters

#### After setting,

Send message: 01 10 90 20 00 04 08 9D 03 00 36 00 03 00 0F 75 61

01: Station No.

10: Write multiple holding registers

90 20: Address in RS485-PDO mode

00 04: The modified content is 4 words, the target speed is 4 bytes, the operation mode is 2 bytes (only one byte originally, here we fill the high byte with zero), and the control word is 2 bytes

08: The modified content is 8 bytes (the reason why it is not 7 bytes is described above) 9D 03 00 36: The content of the target speed modification, hexadecimal is 0036 9D03, converted to decimal is 100 rpm.

00 03: The content of the working mode modification, the operation mode is set to 3

00 0F: The content of the control word modification, write F to the control word

75 61: Check bit

Note:

If you want to read multiple parameters, you should switch to TPDO (Transmit Process Data Object);

If you want to write multiple parameters, you should switch to RPDO (Receive Process Data Object).





## **Chapter 12 CANopen Communication**

CANopen (Controller Area Network Open) is a communication protocol based on the CAN bus, which is used to achieve data exchange and communication between different devices in industrial automation and control systems. It provides a set of standardized communication and device description methods, enabling various devices to work collaboratively on the same network.

The following is a brief introduction to CANopen communication:

**Communication medium:** CANopen uses the CAN bus as the communication medium. The CAN bus is a highly reliable serial communication protocol commonly used in industrial environments, characterized by strong anti-interference capabilities and good real-time performance.

**Device types:** CANopen communication can be used to connect various types of devices, such as motor drivers, sensors, controllers, HMI (Human-Machine Interface), etc. These devices can be produced by different manufacturers as long as they comply with the communication methods and data structures specified by the CANopen communication protocol.

**Communication protocol:** CANopen defines a set of communication protocols, including data frame formats, communication objects, object dictionaries, PDO (Process Data Object), SDO (Service Data Object), etc. These protocols specify the data exchange methods and communication processes between devices.

**Object dictionary:** CANopen uses an object dictionary to describe the parameters, status, and functions of the device. The object dictionary contains a series of indexes and sub-indexes, each corresponding to a specific parameter or function. Devices can exchange data and configure by reading and writing the object dictionary.

**PDO and SDO:** PDO is used for real-time data transmission, while SDO is used for non-real-time data transmission and configuration. PDO can efficiently transmit real-time data between devices, while SDO is used for configuring and managing device parameters.

**Node:** Each device in the CANopen network is called a node. Each node has a unique node ID, which is used to identify and address in the network.

Deremeter nome	CANopne address	Attributo			
Parameter name	Index	Sub-index	Data length	Allindule	
Operation mode	6060	00	08	RW	
Control word	6040	00	10	RW	
Target speed	60FF	00	20	RW	

The following table lists the CANopen object dictionary with explanations:

Here, only the data length and attribute meanings are explained.

Data length: 08 - Data length is 1 byte

10 - Data length is 2 bytes

20 - Data length is 4 bytes

Attribute: R - Readable;



W - Writable; M - Mappable S - Storable (non-volatile)

## **12.1 Hardware Description**

This model of the driver supports one-to-multiple mode. If the CAN communication method is used, the default is to use CAN1A(IN) for input and CAN1B(OUT) for output. For details, please refer to Chapter 4 System Interface and Wiring.

## **12.2 CAN Communication**

## 12.2.1 EDS

EDS stands for "Electronic Data Sheet." It is an electronic data sheet used to describe the communication parameters, object dictionary, mapping information, and functions of CANopen devices in detail. EDS files are usually written in XML format, used to configure and identify CANopen devices, and ensure correct communication between devices.

In the CANopen network, each device has an object dictionary that stores the device's parameters, status, and function information. The EDS file describes the structure and content of this object dictionary, as well as the device's communication parameters, PDO mapping, and other information. By reading the device's EDS file, users can understand the device's functions and communication parameters, thereby correctly configuring and integrating the device into the CANopen network.

The content of the EDS file usually includes:

Device description information, such as device name, manufacturer information, etc.

Communication parameters, such as node ID, baud rate, etc.

The structure and content of the object dictionary, including object index, sub-index, data type, and access permissions.

PDO mapping information, describing the mapping and transmission method of data in PDO communication.

By using the EDS file, users can conveniently configure and integrate various different CANopen devices, ensuring that devices can communicate and exchange data correctly.

## 12.2.2 SDO

## (1) SDO Introduction

In the CANopen communication protocol, SDO stands for "Service Data Object." It is a communication mechanism used for parameter configuration, status query, and data exchange in the CANopen network. The SDO mechanism allows point-to-point communication between the master (Master) device and the slave (Slave) device to read or write data in the object dictionary of the slave device. The object dictionary is an important concept in the CANopen protocol, which is a data structure used to store the device's parameters, status, and function information. Through SDO communication, the



master can send requests to the slave to read or write data in specific object dictionaries. The basic process of SDO communication is as follows:

The master sends an SDO request frame, which includes information such as the node ID of the slave device to be accessed, the object dictionary index and sub-index to be read or written, etc.

The slave receives the SDO request and performs the corresponding operation, such as reading or writing data in the object dictionary.

The slave encapsulates the operation result in the SDO response frame and sends it back to the master.

The master receives the SDO response and parses the data to complete the read or write operation.

The local CAN interface supports the CANopen SDO data transfer protocol. SDO is primarily used for transferring low-priority objects between devices. This type of data transfer is similar to the MODBUS method, where after the master station sends out a request, the slave station needs to respond with data: Client—Server/Server—Client. The basic structure of SDO is shown in the table below:

SDO Command specifier	Object index	Object sub-index	Up to 4 bytes of data
Byte0	Byte1-Byte2	Byte3	Byte4-Byte7

The 2 bytes of the object index and the 4 bytes of the data object are both arranged in little-endian format, meaning the least significant byte comes first and the most significant byte comes last. For example, if the object index is 0x606C, then Byte1 = 6C and Byte2 = 60.

## (2) SDO Read Parameter

When reading parameters, the SDO message format is as follows:

Idoptifior		. Data									
Identinei	DLC	0	1	2	3	4	5	6	7		
0x600+Node_ID	8	Send Comman d	Obj inc	ject lex	Object sub-index		0	0			

When receiving the SDO message, the format is:

Identifier		Data								
Identiller	DLC	0	1	2	3	4	5	6	7	
0x580+Node_ID	8	Receive Comman d	Obj inc	ject lex	Object sub-index	Up	to 4 by	tes of o	data	

The following are the send and receive command for reading parameters:

Send Command	Receive Command	Description
0x40	0x43	The received data is 4 bytes



0x4B	The received data is 2 bytes
0x4F	The received data is 1 bytes
0.480	There is an error in the
0880	received data

## (3) SDO Modify Parameter

When modifying parameters, the SDO message format is as follows:

Identifier					Data				
Identiller	DLC	0	1	2	3	4	5	6	7
0x600+Node_ID	8	Send Comman d	Object index		Object sub-index	Up	to 4 by	tes of o	data

When receiving the SDO message for modifying parameters, the format is:

		Data								
Identilier	DLC	0	1	2	3	4	5	6	7	
0x580+Node_ID	8	Receive Comma nd	Obj inc	iect Iex	Object sub-index	Up	to 4 by	tes of o	data	

The following are the send and receive command words for modifying parameters:

Send	Receive	Description
Command	Command	Description
0x23	0x60	Successfully sent a message with 4 bytes of data
0x23	0x80	SDO message transmission failed
0x2B	0x60	Successfully sent a message with 2 bytes of data
0x2B	0x80	SDO message transmission failed
0x2F	0x60	Successfully sent a message with 1 bytes of data
0x2F	0x80	SDO message transmission failed

### (4) SDO Communication Error Code Table

Serial number	Error code	Description
1	0x05040001	Invalid command
2	0x06010001	Write-only parameter
3	0x06010002	Read-only parameter
4	0x06020000	Invalid index
5	0x06040041	Unable mapping
6	0x06060000	Device hardware failure
7	0x06070010	Data length error
8	0x06070013	Object data is too long
9	0x06070013	Object data is too short
10	0x06090011	Invalid sub-index



11	0x06090030	Invalid value
12	0x06090031	Value is too high
13	0x06090032	Value is too low
14	0x08000000	General error
15	0x08000021	Incorrect control word
16	0x08000022	Incorrect status word
17	0x08000023	No object dictionary

### 12.2.3 PDO

#### (1) PDO Introduction

In the CANopen communication protocol, PDO stands for "Process Data Object." It is a communication mechanism used for real-time data exchange, allowing for the periodic transmission of data between CANopen devices. PDO communication allows devices in the CANopen network to exchange data periodically, typically used for transmitting real-time control, monitoring, and feedback data. Unlike SDO (Service Data Object), PDO communication is point-to-multipoint, allowing one master station to broadcast data to multiple slave stations.

The basic process of PDO communication is as follows:

The master station configures the PDO communication parameters, including the period, mapping of the object dictionary, etc.

The slave station periodically sends PDO data frames to the network according to the parameters set by the master station, which contain real-time data.

Other devices receive the PDO data frames and can parse the data and respond accordingly.

#### The features of PDO communication include:

Real-time: PDO communication is a real-time communication mechanism based on the CAN bus, suitable for applications that require rapid transmission of real-time data.

Efficiency: Since PDO communication is periodic broadcasting, it can quickly convey data across the network, suitable for real-time control and monitoring.

Predefined mapping: PDO communication requires pre-configured mapping of the object dictionary, which clarifies the data transmission format and period.

#### (2) PDO COB-ID

In the CANopen communication protocol, PDO COB-ID stands for "Process Data Object Communication Object Identifier." It is a unique identifier used to identify and distinguish different PDO communication objects. PDO communication is used for real-time data exchange, allowing CANopen devices to transmit data periodically. Each PDO communication object has a unique PDO COB-ID to identify the data frame on the CAN bus.



The composition of PDO COB-ID includes the following parts:

**11-bit or 29-bit identifier:** Identifies the communication object on the CAN bus, 11-bit identifier for standard CANopen networks, and 29-bit identifier for extended CANopen networks. (This model only uses the 11-bit identifier, i.e., only standard frames are used) Node ID (Node ID): Specifies the sending or receiving node of the PDO. This is a unique identifier in the CANopen network, used to determine the source and destination of the data flow.

**COB type:** Indicates the type of the data frame, such as TPDO (transmission) or RPDO (reception), detailed content is introduced below.

10	9	8	7	6	5	4	3	2	1	0
Functio	n Code			Node-II	D					

**Function Code:** he data transmission function code defines the transmission level of various messages, the smaller the function code, the higher the priority.

**Node-ID:** The device station number, the range is 1 to 127

Object	COB-ID
NMT Module Control	000H
SYNC 080H	080H
TIME SSTAMP	100H
Object	COB-ID
Emergency	081H-0FFH
TPDO1 (transmit)	181H-1FFH
RPDO1 (receive)	201H-27FH
TPDO2 (transmit)	281H-2FFH
RPDO2 (receive)	301H-37FH
TPDO3 (transmit)	381H-3FFH
RPDO3 (receive)	401H-47FH
TPDO4 (transmit)	481H-4FFH
RPDO4 (receive)	501H-57FH
SDO (transmit /server)	581H-5FFH
SDO (receive/client)	601H-67FH
NMT Error Control	701H-77FH

Predefined master/slave connection set

Note:

The smaller the COB-ID, the higher the priority.

The function code in front of each level of COB-ID is a fixed format.

COB-ID 00H, 80H, 100H, 701H-77FH, 081H-0FFH are all system management formats.

Through PDO COB-ID, CANopen devices can identify and transmit real-time data. The master station can configure the COB-ID of each PDO communication object to achieve real-time data exchange between different devices.



## (3) Sending PDO(TPDO)

Through PDO, the master station (controller) can send real-time data to the slave station (device). The function code (COB-ID) for sending PDO is:

0x180 + Servo station number

0x280 + Servo station number

0x380 + Servo station number

0x480 + Servo station number

## (4) Receiving PDO(RPDO)

Through PDO, the slave station (device) can send real-time data to the master station (controller). The function code (COB-ID) for sending PDO is:

0x200 + Servo station number

0x300 + Servo station number

0x400 + Servo station number

0x500 + Servo station number

## (5)PDO Transmission Mode

In the CANopen communication protocol, PDO (Process Data Object) has two main types of transmission: synchronous transmission and asynchronous transmission.

**Synchronous transmission:** Synchronous transmission is triggered by a synchronous message. The transmission type range is 0 to 240. In this mode, the master station must have the ability to send synchronous messages at a fixed frequency (up to 1 kHz). Once the driver receives the synchronous message, it will send the PDO data immediately after receiving. Synchronous transmission can be divided into two ways:

**Non-periodic synchronous transmission:** In this mode, PDO data can be pre-triggered by a remote frame or a specific event defined in the device sub-protocol. The driver will send PDO data once immediately after receiving the synchronous message.

**Periodic synchronous transmission:** In this mode, the transmission of PDO data is triggered after receiving 1 to 240 SYNC messages. The driver will send PDO data once after receiving a certain number of synchronous messages.

Synchronous message format

COB-ID	DLC
0x80	0

**Asynchronous transmission:** The transmission type for asynchronous transmission is 254 or 255. In asynchronous transmission, when the data of the slave station message changes, the slave station will immediately send PDO data regardless of whether the master station requests it. In addition, the time interval between two transmissions of the same message can be defined to avoid the situation where some high-priority messages always occupy the bus. In asynchronous transmission, the lower the value of PDO, the higher the priority. Asynchronous transmission can be summarized as follows:



**Event-driven immediate transmission function:** The slave station sends a message immediately after the data changes, regardlessof whether the master station inquires, and the time interval between two transmissions of the same message can be defined to avoid high-priority messages always occupying the bus (the lower the value of PDO, the higher the priority).

**Event time periodic reporting function:** Set the event time, and the driver will periodically upload data to the controller.

#### (6) PDO Inhibit Time

In the CANopen communication protocol, PDO Inhibit Time is an important parameter used to control the transmission interval of PDO data frames. The inhibit time refers to the period during which the transmission of PDO is prohibited after a PDO data frame has been sent to prevent too frequent data transmission.

Specifically, after a PDO data frame is sent, the PDO inhibit time starts, preventing the transmission of the same PDO data frame again within a certain period. This time interval can be set to a fixed value to ensure that data transmission is not too dense. The setting of the inhibit time can avoid network congestion and data conflicts, thereby improving the reliability and efficiency of communication.

In the CANopen network, each PDO communication object can configure its own inhibit time to adapt to different application scenarios and needs. By reasonably setting the inhibit time, stable transmission of PDO data can be ensured, avoiding data loss and conflicts, thus achieving reliable real-time data exchange and communication.

#### (7) Heartbeat Messages and Node Guarding

Heartbeat messages and node guarding are designed to improve the reliability and stability of the CANopen network. Heartbeat messages are used to monitor the status of nodes in real-time, while node guarding takes preventive measures when exceptions occur to protect the safety and normal operation of nodes and the entire communication network.

**Heartbeat messages:** Slaves periodically send heartbeat messages to the master. If the master does not receive the next heartbeat message within a set period, it will be considered that the slave may have a fault.

Heartbeat message format - (0x700 + node number) + status Status - 0: Start, 4: Stop, 5: Run, 127: Pre-operation

**Node guarding:** The master periodically sends messages to the slave. If the slave does not receive the master's message within a set period, an alarm will be triggered. The alarm time is "supervision time × life factor."



Master request message format - (0x700 + node number) (remote frame) Slave response message format - (0x700 + node number) + status: Status - The data part includes a trigger bit (bit7), which must alternate between "0" or "1" in each node protection response.

The trigger bit is set to "0" during the first node protection request. Bits 0 to 6 (bit0 $\sim$ bit6) represent the node status;

0: Initialization, 1: Disconnected, 2: Connected, 3: Operation, 4: Stop, 5: Run, 127: Pre-operation.

**Consumer heartbeat time:** The consumer heartbeat time includes three parts: node protection time, life factor, and node protection ID. Among them, bit0~bit15 is the heartbeat protection time, and bit16~bit23 is the heartbeat protection ID. This is derived for user convenience.

SVD series support both heartbeat messages and node protection modes.

#### (8)NMT Management

During the network initialization process, CANopen supports extended boot-up and also supports a minimized boot-up process. This initialization process can be represented by a node status transition diagram.



Figure 12-1 Status Transition Diagram

- a: MNTb: Node Guardc: SDOd: Emergency
- e: PDO f: Boot-up

**Initialization (Initialising):** The first state after the node is powered on or reset, the node performs basic hardware and software initialization and cannot communicate.



**Pre-operational (Pre-operational):** The state automatically entered after the node initialization is completed, the node can perform SDO communication but cannot perform PDO communication. This state is usually used for configuring node parameters and PDO mapping.

**Operational (Operational):** The node can perform all types of communication, including SDO and PDO. This state is the normal working state of the node. (Generally, enter the operational state through NMT management: such as 000 01 01, detailed introduction below.)

**Stopped (Stopped):** The node stops all communication, except for NMT and heartbeat (if enabled). This state can be used to implement specific application behaviors.

NMT Management Message Format

COB-ID	DLC	Byte0	Byte1
0x000	02	Command	Station No.

Command word related content is as follows:

Command	NMT service
0x01	Start the node and start PDO transmission
0x02	Close the node and stop PDO transmission
0x80	Enter the pre-operational state
0x81	Reset the node
0x82	Reset communication

When Node-ID=0, all NMT slave devices are addressed. Note:

You can use NMT management messages to switch between various modes. Only the NMT-Master node can transmit NMT Module Control messages, and all slave devices must support the NMT module control service. In addition, NMT Module Control messages do not require a response. PDO can only be transmitted in the operational state (generally through PDO).

## **12.3 CAN Communication Examples**

## 12.3.1 SDO Communication Example

The default station number is 01.

(1) Write speed mode

For details on the conversion of target speed and other parameters, please refer to the UART communication example or the parameter conversion formula in Chapter 6.

10rpm is converted to hexadecimal as 57619

50rps/s is converted to hexadecimal as 1A36E	
----------------------------------------------	--

CAN address	Name	Setting value	Message	Description
60600008	Operation	3	601 2F 60 60 00 03 00 00 00	Operation



	mode			mode is set to 3
60550020	Target	10rpm	601 23 EE 60 00 10 76 05 00	Target speed is
00110020	speed	тогріп	0012311 00 00 1978 03 00	set to 10rpm
	Drofilo			Profile
60830020	FIONE	50rps/s	601 23 83 60 00 6E A3 01 00	acceleration is
	acceleration			set to 50rps/s
	Profile			Profile
60840020	decoloration	50rps/s	601 23 84 60 00 6E A3 01 00	deceleration is
	deceleration			set to 50rps/s
				The control
60400010	Control	F	601 2B 40 60 00 0E 00 00 00	word is set to F,
60400010	word	F	601 2B 40 60 00 0F 00 00 00	locking the
				motor axis

According to the above operations, the motor will accelerate to 10 rpm with profile acceleration of 50 rps/s. If the target speed is written to 0 again, the motor will decelerate to 0 with aprofile deceleration of 100 rps/s.

#### (2) Write relative position mode

For details on the conversion of target speed and other parameters, please refer to the UART communication example or the parameter conversion formula in Chapter 6. 50 rpm is converted to decimal as 1,789,569, and hexadecimal as 1B 4E81.

CAN address	Name	Setting value	Message	Description
60600008	Operation mode	1	601 2F 60 60 00 01 00 00 00	Operation mode is set as 1
60810020	Profile speed	50rpm	601 23 81 60 00 81 4E 1B 00	Profile speed is set to 50 rpm
607A0020	Target position	10000 inc	601 23 7A 60 00 10 27 00 00	Target position is set to 10000 inc
60400010	Control word	0x4F->0x5F	601 2B 40 60 00 4F 00 00 00 601 2B 40 60 00 5F 00 00 00	The control word is changed from 4F to 5F

10000 is converted to hexadecimal as 2710.

According to the above operations, the motor will run 10000 inc distance at a speed of 50 rpm on the original position.

(3) SDO Read Status Word, Actual Speed

By querying the object list, we can know:



Status word CAN address: 6041002B

Actual position CAN address: 60630023

In the SDO section above, it has been introduced that the command word for executing the read instruction is 0x40.

Operation	Send message	Receive message
<ol> <li>Read status word</li> </ol>	601 40 41 60 00 00 00 00 00	5814B41 600031 0200 00
②Read actual position	601 40 63 60 00 00 00 00 00	5814363 60000D 0D00 00
③Read actual speed	601 40 6C 60 00 00 00 00 00	581436C 6000 00 DB FF FF

For the above responsemessages:

① Read status word: 581 4B 41 60 00 31 02 00 00

4B indicates that the returned data is a 16-bit data. The returned data (3102) is converted to hexadecimal as 0231, indicating the status word is 231.

② Read actual position: 581 43 63 60 00 0D 0D 00 00

43 indicates that the returned data is a 32-bit data. The returned data (0D0D 0000) is converted to hexadecimal as 0D0D, and then converted to decimal as 3341.

③ Read actual speed: 581 43 6C 60 00 00 DB FF FF

43 indicates that the returned data is a 32-bit data. The returned data (00DB FFFF) is converted to hexadecimal as FFFF 00DB. Since the highest bit is F, the actual value is a negative number -65317, converted to rpm as -2.

Note:

The most significant bit (MSB) of the negative values of speed and position is 1, and they are transmitted in two's complement form. If the actual position is -5000, it will be represented in the computer as FFFF EC78.

## 12.3.2 PDO Configuration

If configured through the AMPS software, you can follow these steps:

In the work area, Click on "Parameter List" -> Click on "TPDO Configuration"

Object Dictionary Pa	ramete	r List 🛛 🗙	Digital IO F	unctions					· ·
🖃 🍋 Parameter Group	_								
😑 🍋 Default Group	N	Index	Туре	Name	Set Value	Current Value	Uint	^	
- Basic Operation	1	180001	Unsigned32	TX1_ID		181	HEX		
- Station Loop	2	180002	Unsigned8	TX1_Transmission		254	DEC		
- Current Loop	3	180003	Unsigned16	TX1_Inhibit_Time		10	DEC		
- Motor Setting	4	180005	Unsigned16	TX1_Event timer		0	DEC		
Din Spd/Pos Mode	5	1A0000	Unsigned8	Group_TX1_PDO		0	DEC		
📲 Pulse Mode	6	1A0001	Unsigned32	TX1_PDO1		0	HEX		
Others	7	1A0002	Unsigned32	TX1_PDO2		0	HEX		
RPDO Config	8	1A0003	Unsigned32	TX1_PDO3		0	HEX		
😑 Custom Group	9	1A0004	Unsigned32	TX1_PDO4		0	HEX		
	10	1A0005	Unsigned32	TX1_PDO5		0	HEX		
	11	1A0006	Unsigned32	TX1_PDO6		0	HEX		
	12	1A0007	Unsigned32	TX1_PDO7		0	HEX		
	13	1A0008	Unsigned32	TX1_PDO8		0	HEX		
	14	180101	Unsigned32	TX2_ID		281	HEX		
	15	180102	Unsigned8	TX2_Transmission		254	DEC		
	16	180103	Unsigned16	TX2_Inhibit_Time		10	DEC		
	17	180105	Unsigned16	TX2_Event timer		0	DEC		
	18	1A0100	Unsigned8	Group_TX2_PDO		0	DEC		
	19	1A0101	Unsigned32	TX2_PDO1		0	HEX		
	20	1A0102	Unsigned32	TX2_PDO2		0	HEX		
	21	1A0103	Unsigned32	TX2_PDO3		0	HEX		
	22	1A0104	Unsigned32	TX2_PDO4		0	HEX		
	23	1A0105	Unsigned32	TX2_PDO5		0	HEX		
	24	1A0106	Unsigned32	TX2_PDO6		0	HEX		
	25	1A0107	Unsigned32	TX2_PDO7		0	HEX		
	26	140100	Unsignadaa	TV3 BDOR		0	UEV	1 *	

#### Figure 12-2 TPDO Configuration

TPDO Station Number: Determined by the driver's DIP switch, for details, see Chapter 4



System Interface and Wiring

#### **TPDO Transmission Type**:

0: Non-periodic synchronous mode, that is, data is sent when the synchronous message is received and the data changes

1~240: Periodic synchronous, that is, data is sent when x synchronous messages are received, x is the set value

241~253: Reserved

254/255: Non-periodic non-synchronous, at this time, "Event Time" is effective. If the event time is non-zero, it is sent immediately after the event time; if it is zero, the data is sent when the change occurs and the time since the last send is greater than the inhibition time.

**TPDO Inhibition Time**: Send PDO data frames after a period of time to avoid network congestion and data conflicts, unit is ms

**TPDO Event Time**: The period of time for the driver to send PDO to the controller, unit is ms

**TPDO Valid Mapping Object Count**: The set number of mappings.

TPDO Mapping 1-8: Configure CANopen control objects

Note:

When using the asynchronous transmission event-driven immediate transmission function, the corresponding inhibition time should be set, and the event time should be set to 0; When using the time-based periodic reporting function: the corresponding event time should be set, and the inhibition time should be set to 0.

The total length of the objects mapped in each PDO should not exceed 8 bytes.

CANopen address	Name	Description	Default
		Used when the transmission type is	
10050020	Sync ID	1-240 synchronous mode, not needed	80
		in asynchronous mode.	
10000010	Node guarding	The master station periodically sends	1000
1000010	time	remote frames to inquire about the	1000
		status of the slave node. The slave	
		node must respond within a certain	
		period of time, otherwise, the master	
100D0008	Life factor	station will consider the slave node to	3
		be offline and the driver will alarm.	
		Guarding time * Life factor = Life time	
		of node guarding	
10050020	Node guarding	700+ Driver ID	
10020020	ID		
	Emergency	80 + Driver station number	
10140020	message station		
	number		

SDO Communication Common Object List



40400400	Consumer	"bit0~bit15: Heartbeat guarding time	
10160120	Heartbeat time	bit16~bit23: Heartbeat guarding ID"	
		CAN baud rate setting	
		100: 1M	
		50: 500k	
25800208	CAN baud rate	25: 250k	50
21 000200	OAN badd rate	12: 125k	50
		10: 100k	
		5: 50k	
		2: 20k	
		Monitor communication status in	
		synchronous mode, no change in the	
30110410	ECAN sync loss	value indicates good communication	
	count	status, if the value keeps changing, it	
		indicates interference or incorrect	
		sync period setting.	
		CAN communication interruption	
		mode, after the set time has passed	
	Communication	without receiving the node guarding	
60070010	interruption	message, the action logic.	0
	mode	0: Do not process	
		1/2: Error, and release axis	
		3: Warning, and emergency stop	

## 12.3.3 NMT Management Example

According to Section 12.2.3, the NMT management message format is as follows:

COB-ID	DLC	Byte0	Byte1
0x000	02	Command	Node ID

For example, with Node ID 1:

The command to start the node is 0x01, then the start PDO node message is: 000 01 01; The command to close the node is 0x02, then the close PDO node message is: 000 02 01;

The command to reset the node is 0x81, then the close PDO node message is: 000 81 01;



## 12.3.4 PDO Communication Example

Object Dictionary Par	amete	r List 🛛 🗙	Digital IO F	unctions					
🖃 🏁 Parameter Group									0: Non-periodic
🚍 🍋 Default Group	N	Index	Туре	Name	Set Value	Current Value	Uint	^	synchronization mode,
Basic Operation	1	180001	Unsigned32	TX1 ID		181	HEX		which means data is sent
- E Position Loop	2	180002	Unsigned8	TX1 Transmission	3	3	DEC		synchronization message
Current Loop	3	180003	Unsigned16	TX1 Inhibit Time	20	20	DEC		and when data changes.
- 💼 Motor Setting	4	180005	Unsigned16	TX1 Event timer		0	DEC		synchronization, which
- Card (Dec Made	5	1A0000	Unsigned8	Group TX1 PDO	2	2	DEC	-	means data is sent after
Pulse Mode	6	1A0001	Unsigned 32	TX1 PDO1	60410010	60410010	HEX	-	receiving x synchronization
- 📢 Others	7	1A0002	Unsigned32	TX1 PDO2	60630020	60630020	HEX		set value.
- 🕄 TPDO Config	8	1A0003	Unsigned32	TX1 PDO3		0	HEX	-	241~253: Reserved.
- S RPDO Contig	9	1A0004	Unsigned32	TX1 PDO4		0	HEX		non-synchronous, at this
_ custom or oup	10	140005	Unsigned32	TX1 PDO5		0	HEX	-	time, "Event Time" is valid.
	11	1A0006	Unsigned32	TX1_PDO6		0	HEX		zero, data is sent
	12	140007	Uncigned 22	TV1 8007		0	LIEV		immediately after the
	12	140007	Unigned32	TX1_PD07		0			event time; if it is zero,
	14	100101	Unsigned 32			201			change and the time since
	14	100101	Unsigned 52	TX2_IU		201	HEA DEC	-	the last send is greater
	15	180102	Unsignedo	TA2_Transmission		204	DEC		than the prohibition time.
	16	180103	Unsigned16	TX2_Inhibit_Time		10	DEC		
	17	180105	Unsigned16	TX2_Event timer		0	DEC		
	18	1A0100	Unsigned8	Group_TX2_PDO		0	DEC		
	19	1A0101	Unsigned32	TX2_PDO1		0	HEX		
	20	1A0102	Unsigned32	TX2_PDO2		0	HEX		
	21	1A0103	Unsigned32	TX2_PDO3		0	HEX		
	22	1A0104	Unsigned32	TX2_PDO4		0	HEX		
	23	1A0105	Unsigned32	TX2_PDO5		0	HEX		
	24	1A0106	Unsigned32	TX2_PDO6		0	HEX		
	25	1A0107	Unsigned32	TX2_PDO7		0	HEX		
	26	140100	Undependent	TV3 0000		0	UEV	1 ×	/ <u></u>

(1) TPDO Synchronous Communication Example

#### Figure 12-3 Parameter Mapping

We set the TPDO1 station number to 181, the transmission type to 3 (send data once after receiving 3 synchronous messages), the inhibition time to 20, TPDO1 Mapping 1 to 60410010, and TPDO1 Mapping 2 to 60630020.

Send message: 000 01 01 to start the message (no response message) 000: COB-ID, 01: Start, if 02 is entered, it is to close, 01: Node ID

Below is a demonstration through "Innovative Chip Technology" CAN interface software.

After sending three times 0x80 (0x80 refers to COB-ID), you can receive the response message from the driver.





The received message is as follows: B1 02 17 F0 06 00 It indicates that the data in the status word (60410010) is 02B1 The actual position (60630020) data is 0006F017 (454679)

Object Dictionary Para	mete	r List 🛛 🗙	Digital IO F	unctions					
🖃 🏁 Parameter Group									TPDO event time, unit: ms
😑 🍋 Default Group	N	Index	Туре	Name	Set Value	Current Value	Uint	^	
Basic Operation	1	180001	Unsigned32	TX1_ID		181	HEX		
Velocity Loop	2	180002	Unsigned8	TX1_Transmission	254	254	DEC		
- Current Loop	3	180003	Unsigned16	TX1_Inhibit_Time		0	DEC		
- Motor Setting	4	180005	Unsigned16	TX1_Event timer	20	20	DEC		
Din Spd/Pos Mode	5	1A0000	Unsigned8	Group_TX1_PDO	2	2	DEC		
- 💼 Pulse Mode	6	1A0001	Unsigned32	TX1_PDO1	60410010	60410010	HEX		
- Conters	7	1A0002	Unsigned32	TX1_PDO2	60630020	60630020	HEX		
RPDO Config	8	1A0003	Unsigned32	TX1_PDO3		0	HEX		
Custom Group	9	1A0004	Unsigned 32	TX1_PDO4		0	HEX		
	10	1A0005	Unsigned32	TX1_PDO5		0	HEX		
	11	1A0006	Unsigned32	TX1_PDO6		0	HEX		
	12	1A0007	Unsigned32	TX1_PDO7		0	HEX		
	13	1A0008	Unsigned 32	TX1_PDO8		0	HEX		
	14	180101	Unsigned32	TX2_ID		281	HEX		
	15	180102	Unsigned8	TX2_Transmission		254	DEC		
	16	180103	Unsigned16	TX2_Inhibit_Time		10	DEC		
	17	180105	Unsigned16	TX2_Event timer		0	DEC		
	18	1A0100	Unsigned8	Group_TX2_PDO		0	DEC		
	19	1A0101	Unsigned32	TX2_PDO1		0	HEX		
	20	1A0102	Unsigned32	TX2_PDO2		0	HEX		
	21	1A0103	Unsigned32	TX2_PDO3		0	HEX		
	22	1A0104	Unsigned32	TX2_PDO4		0	HEX		
	23	1A0105	Unsigned32	TX2_PDO5		0	HEX		
	24	1A0106	Unsigned32	TX2_PDO6		0	HEX		
	25	1A0107	Unsigned32	TX2_PDO7		0	HEX		
	26	140100	Undonadaa	TV2 0000		0	UEV	×	

### (2) TPDO Asynchronous Communication Example

Figure 12-4 Parameter Mapping

We set the TPDO1 station number to 181, the transmission type to 254, the inhibition time to 20, TPDO1 Mapping 1 to 60410010, and TPDO1 Mapping 2 to 60630020.

Then send the message: 000 01 01 to start the message to receive the response message from the driver. When the data changes, it returns the data every 20ms (TPDO inhibition time).

CAN USB-C	CAN Tool V9.11	- USBCAN-II -	SN:Serial	number: 2	21100204 <i>A</i>	F8, firmwa	re version numbe	r: V3.34 - C —	
Device(D)	Operation(O	) Settings( <u>S</u> )	Informa	ation(l) \	/iew(V) ⊦	lelp( <u>H</u> ) La	anguage( <u>L</u> )		
Send D	ata								
Forma	t: Standard 🗸	Type: Date	- CAN	ID (HEX) :	8 00 00 8	) Channel:	1 VNumber	to send: 1	ID Inc.
Data(HEX	):		Send				Sen	d Cycle: 1000 ms	Data Inc.
CAN Rou	ting	ID Filt	er			Frm	saved: 0	Stop send	Send file
	Unused	CAN1	settings	CAN2 se	ettings	$\checkmark$	Receive Enable	Clear	Save
Statis	tics:Ch1					Statisti	cs:Ch2		
Frm/s R	0 Fr	m/s T: 0				Frm/s R:	51.7 Frm/s T	: 0	
Index	System Time	Time Stamp	Channel	Directio	Frame ID	Туре	Format DLC I	Data	^
01406	15:46:15.144	OxDC7E7F8	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AB 0B 00 00	
01407	15:46:15.144	OxDC7E8C0	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AB 0B 00 00	
01408	15:46:15.175	0xDC7E987	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AB 0B 00 00	
01409	15:46:15.204	OxDC7EA4F	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AC OB 00 00	
01410	15:46:15.204	OxDC7EB17	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AB 0B 00 00	
01411	15:46:15.235	OxDC7EBDF	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AB 0B 00 00	
01412	15:46:15.264	OxDC7ECA6	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AB 0B 00 00	
01413	15:46:15.264	OxDC7ED6E	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AB 0B 00 00	
01414	15:46:15.294	OxDC7EE36	ch2	Receive	0x0181	Data	Standar 0x06 >	x 31 00 AB 0B 00 00	
01415	15:46:15.323	OxDC7EEFE	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AB 0B 00 00	
01416	15:46:15.323	OxDC7EFC5	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AC OB 00 00	
01417	15:46:15.354	OxDC7F08D	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AB 0B 00 00	
01418	15:46:15.384	OxDC7F155	ch2	Receive	0x0181	Data	Standar 0x06 >	x 31 00 AC OB 00 00	
01419	15:46:15.384	OxDC7F21D	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AB 0B 00 00	
01420	15:46:15.415	OxDC7F2E4	ch2	Receive	0x0181	Data	Standar 0x06 >	κ  31 00 AB 0B 00 00	~
<									>



The received message is as follows: B1 02 17 F0 06 00 It indicates that the data in the status word (60410010) is 02B1 The actual position (60630020) data is 0006F017 (454679)

If you need to report periodically, just set the TPDO inhibition time to 0, and set the TPDO event time to the corresponding time (for example, 50), the driver will periodically send TPDO data (regardless of whether the data has changed).

## (3) RPDO Communication Example

Object Dictionary Par	amete	r List 🛛 🗙	Digital IO F	unctions					
🖃 😑 Parameter Group									
🖶 😁 Default Group	N	Index	Туре	Name	Set Value	Current Value	Uint	~	
Basic Operation	1	140001	Unsigned32	RX1_ID	201	201	HEX		
Velocity Loop	2	140002	Unsigned8	RX1_Transmission		254	DEC		
- 🕄 Current Loop	3	140003	Unsigned16	RX1_Inhibit_Time		10	DEC		
- 🕼 Motor Setting	4	160000	Unsigned8	Group_RX1_PDO	2	2	DEC		
Analog Setting     Din Spd/Pos Mode	5	160001	Unsigned32	RX1_PDO1	60FF0020	60ff0020	HEX		
- Pulse Mode	6	160002	Unsigned32	RX1_PDO2	60400010	60400010	HEX		
- 🕼 Others	7	160003	Unsigned32	RX1 PDO3	0	0	HEX		
- TPDO Config	8	160004	Unsigned32	RX1 PDO4		0	HEX		
Custom Group	9	160005	Unsigned32	RX1 PDO5		0	HEX		
· · ·	10	160006	Unsigned 32	RX1 PDO6		0	HEX		
	11	160007	Unsigned32	RX1 PDO7		0	HEX		
	12	160008	Unsigned32	RX1 PDO8		0	HEX		
	13	140101	Unsigned32	RX2 ID		301	HEX		
	14	140102	Unsigned8	RX2 Transmission		254	DEC		
	15	140103	Unsigned16	RX2 Inhibit Time		10	DEC		
	16	160100	Unsigned8	Group RX2 PDO		0	DEC		
	17	160101	Unsigned 32	RX2 PDO1		0	HEX		
	18	160102	Unsigned 32	RX2 PDO2		0	HEX		
	19	160103	Unsigned 32	RX2 PDO3		0	HEX		
	20	160104	Unsigned 32	RX2 PDO4		0	HEX		
	21	160105	Unsigned 32	RX2 PDO5		0	HEX		
	22	160106	Unsigned 32	RX2 PDO6		0	HEX		
	23	160107	Unsigned 32	RX2 PDO7		0	HEX		
	24	160108	Unsigned32	RX2 PDO8		0	HEX		
	25	140201	Unsigned 32	RX3 ID		401	HEX		
	26	140303	Unsigned	DV2 Transmission		254	DEC	×	

We set the RPDO1 station number to 201, the transmission type to 254, the inhibition time to 10, RPDO1 Mapping 1 to 60FF0020 (target speed), and RPDO1 Mapping 2 to 60400010 (control word).

Send the message: 000 01 01 to start the node (no return message)

Then send 201 03 9D 36 00 0F 00 to write multiple parameters to the driver at the same time (no return message)

oject Dictionary Para	imetei	r List 🛛 🗙	Digital IO F	unctions				
Parameter Group	_							
Default Group	Ν	Index	Туре	Name	Set Value	Current Value	Uint	
- Position Loop	1	606100	Integer8	Operation_Mode_Buff		3	DEC	
Velocity Loop	2	604100	Unsigned16	Statusword		37	HEX	
Current Loop	3	606300	Integer32	Pos_Actual		5247181	inc	
Motor Setting	4	606C00	Integer32	Speed_Real		783.376	rpm	
Din Spd/Pos Mode	5	607800	Integer16	Lq.		0	Arms	
- 😢 Pulse Mode	6	60F709	Unsigned16	Real_DCBUS		24	v	
- 🚯 Others	7	260100	Unsigned16	Error_State		0	HEX	
- BPDO Config	8	606000	Integer8	Operation_Mode		3	DEC	
Custom Group	9	604000	Unsigned16	Controlword		f	HEX	
	10	607A00	Integer32	Target_Position		0	inc	T
	11	608100	Unsigned32	Profile_Speed		99.999	rpm	
	12	608300	Unsigned32	Profile_Acc		9.998	rps/s	
	13	608400	Unsigned32	Profile_Dec		9.998	rps/s	
	14	60FF00	Integer32	Target_Speed		799.999	rpm	
	15	607100	Integer16	Target_Torque%		0	%	T
	16	607300	Unsigned16	CMD_q_Max		0.295	Arms	
	17	608500	Unsigned32	Quick_Stop_Dec		499.997	rps/s	
	18	300303	Unsigned8	Encoder_Data_Reset		0	HEX	
	19	607F00	Unsigned32	Max_Speed		9999.999	rpm	
	20	23400E	Unsigned8	keba		0	DEC	
	21	101700	Unsigned16	Producer_Heartbeat_Ti	1000	0	DEC	



### (4) keba

This driver can not only enable PDOs through NMT management but also by modifying the value of 0x23400E — the KEBA value to enable PDOs. An example is as follows: 1. First, set the PDO-related parameters; here, we set the actual current value to be read through TPDO.

Parameter List × Digital	IO Fur	nctions							
🖃 芦 Parameter Group	_								
Default Group	Ν	Index	Туре	Name	Set Value	Current Value	Uint		
Position Loop	1	180001	Unsigned32	TX1_ID		181	HEX		
- Velocity Loop	2	180002	Unsigned8	TX1_Transmission		254	DEC		
- 🕄 Current Loop	3	180003	Unsigned16	TX1_Inhibit_Time		10	DEC		
Motor Setting	4	180005	Unsigned16	TX1_Event timer		0	DEC		
Din Spd/Pos Mode	5	1A0000	Unsigned8	Group_TX1_PDO	1	1	DEC		
- 🕫 Pulse Mode	6	1A0001	Unsigned 32	TX1_PDO1	60780010	60780010	HEX		
- Others	7	1A0002	Unsigned32	TX1_PDO2		0	HEX	-	
RPDO Config	8	1A0003	Unsigned32	TX1_PDO3		0	HEX		
->> Custom Group	9	1A0004	Unsigned32	TX1_PDO4		0	HEX		
	10	1A0005	Unsigned32	TX1_PDO5		0	HEX		
	11	1A0006	Unsigned32	TX1_PDO6		0	HEX		
	12	1A0007	Unsigned32	TX1_PDO7		0	HEX		
	13	1A0008	Unsigned32	TX1_PDO8		0	HEX		
	14	180101	Unsigned32	TX2_ID		281	HEX		
	15	180102	Unsigned8	TX2_Transmission		254	DEC		
	16	180103	Unsigned16	TX2_Inhibit_Time		10	DEC		
	17	180105	Unsigned16	TX2_Event timer		0	DEC		
	18	1A0100	Unsigned8	Group_TX2_PDO		0	DEC		
	19	1A0101	Unsigned 32	TX2_PDO1		0	HEX		
	20	1A0102	Unsigned32	TX2_PDO2		0	HEX		
	21	1A0103	Unsigned32	TX2_PDO3		0	HEX		
	22	1A0104	Unsigned32	TX2_PDO4		0	HEX		
	23	1A0105	Unsigned32	TX2_PDO5		0	HEX		
	24	1A0106	Unsigned 32	TX2_PDO6		0	HEX		
	25	1A0107	Unsigned32	TX2_PDO7		0	HEX		
	26	140100	Unclosed22	TV3 0000		0	urv	· · · · · · · · · · · · · · · · · · ·	

2. Then modify keba to 1, and enable PDO to automatically upload the actual current value.

	20	23400E	Unsigned8	keba	1	1	DEC
II.							

3. To close PDO, it is necessary to change it back to 0, then store the control parameters and restart.

🔛 USB-CAN Tool V9.11 - USBCAN-II - SN:Serial number: 21100204AF8, firmware version number: V3.34 - C – 🗌 🗙									
Device(D)	Operation(O	) Settings( <u>S</u>	Inform	ation( <u>l</u> ) Vi	iew( <u>V</u> ) H	lelp( <u>H</u> ) La	anguage( <u>L</u> )		
Send Data									
Format: Standard V Type: Data VCANID(HEX): 00 00 00 80 Channel: 1 VNumber to send: 1 ID Inc.									ID Inc.
Data(HEX): Send Send Cycle: 1000 ms Data Inc.									
CAN Routing ID Filter Frm saved: 0 Stop send Send								Send file	
	Unused	CAN1	settings	CAN2 set	ttings	$\checkmark$	Receive Enable	Clear	Save
Statis	tics:Ch1					Statisti	cs:Ch2		
Frm/s R	: 0 Fr	m/s T: O				Frm/s R:	51.7 Frm/s	T: 0	
Index	System Time	Time Stamp	Channel	Directio	Frame ID	Туре	Format DLC	Data	
01406	15:46:15.144	OxDC7E7F8	ch2	Receive	0x0181	Data	Standar: 0x06	x  31 00 AB 0B 00 00	
01407	15:46:15.144	OxDC7E8CO	ch2	Receive (	0x0181	Data	Standar: 0x06	x 31 00 AB 0B 00 00	
01408	15:46:15.175	0xDC7E987	ch2	Receive	0x0181	Data	Standar: 0x06	x 31 00 AB 0B 00 00	
01409	15:46:15.204	OxDC7EA4F	ch2	Receive	0x0181	Data	Standar: 0x06	x 31 00 AC 0B 00 00	
01410	15:46:15.204	OxDC7EB17	ch2	Receive	0x0181	Data	Standar: 0x06	x 31 00 AB 0B 00 00	
01411	15:46:15.235	OxDC7EBDF	ch2	Receive	0x0181	Data	Standar: 0x06	x 31 00 AB 0B 00 00	
01412	15:46:15.264	OxDC7ECA6	ch2	Receive	0x0181	Data	Standar: 0x06	x 31 00 AB 0B 00 00	
01413	15:46:15.264	OxDC7ED6E	ch2	Receive	0x0181	Data	Standar: 0x06	x  31 00 AB 0B 00 00	
01414	15:46:15.294	OxDC7EE36	ch2	Receive	0x0181	Data	Standar: 0x06	x  31 00 AB 0B 00 00	
01415	15:46:15.323	OxDC7EEFE	ch2	Receive	0x0181	Data	Standar: 0x06	x  31 00 AB 0B 00 00	
01416	15:46:15.323	OxDC7EFC5	ch2	Receive	0x0181	Data	Standar: 0x06	x 31 00 AC 0B 00 00	
01417	15:46:15.354	OxDC7F08D	ch2	Receive	0x0181	Data	Standar: 0x06	x 31 00 AB 0B 00 00	
01418	15:46:15.384	OxDC7F155	ch2	Receive	0x0181	Data	Standar: 0x06	x 31 00 AC 0B 00 00	
01419	15:46:15.384	OxDC7F21D	ch2	Receive	0x0181	Data	Standar: 0x06	x 31 00 AB 0B 00 00	
01420	15:46:15.415	OxDC7F2E4	ch2	Receive	0x0181	Data	Standar: 0x06	x 31 00 AB 0B 00 00	
<									>



#### 12.3.5 Node Guarding Example

the message has no data, and it should be set as a remote frame

Host send message: 0x700 + node number Slave (driver) response message: 0x700 + Node ID+ status

For example, with node number 1

Then the host sends the message: 0x701 (continuously sending state)

Slave response message: 0x701 7F

0x701 FF

10170010

In the continuous sending state, the slave alternates between responding to two messages, that is, the trigger bit is set to "0" or "1" in each node protection response (as mentioned above in the node protection).

CAN address	Name		Setting value	Send and reply message						
	Producer	heartbeat		6012B17 1000E8 0300 00						

1000

#### 12.3.6 Heartbeat Message Example

time

According to the above settings and sending messages, the slave (driver) will report the message every 1 second.

5816017 1000E8 0300 00

We will clear the producer heartbeat time again to cut off the reply message.

USB-(	CAN Tool V9.11	I - USBCAN-II	- SN:Serial	number: 2	21100204A	AF8, firmwa	re versior	numb	per: V3.34	4 - C	_		×
	Operation(C	2) Settings( <u>S</u>	) Inform	ation()	view( <u>v</u> ) F	telp( <u>H</u> ) La	anguage(						
Send Data													
Forms	it: Standard ∨	Type: Dat	a VCAN	ID (HEX) :	00 00 00 00	Channel	1 ~	Number	to send	: 1		ID Inc.	
Data(HEX	:): 02 01		Send					S	end Cycle	: 1000	ms 🗆	Data In	c.
CAN Routing ID Filter													
		1				Frm	saved: U			Stop se	nd S	end file	4
	Unused	CAN1	settings	CAN2 s	ettings	$\checkmark$	Receive H	Inable		Clear		Save	
Statis	tics:Ch1					Statisti	cs:Ch2						
Frm/s R	: 0 F2	rm/s T: 0				Frm/s R:	1	Frm/s	T: 0				
dex	System Time	Time Stamp	Channel	Directio	Frame ID	Type	Format	DLC	Data				
00000	15:55:50.604	OxE1F9BE5	ch2	Receive	0x0701	Data	Standar	0x01	x  7F				
00001	15:55:51.625	0xE1FC2F2	ch2	Receive	0x0701	Data	Standar	0x01	x  7F				
00002	15:55:52.615	OxE1FE9FF	ch2	Receive	0x0701	Data	Standar	0x01	x  7F				
00003	15:55:53.604	0xE20110C	ch2	Receive	0x0701	Data	Standar	0x01	x  7F				
00004	15:55:54.624	0xE203819	ch2	Receive	0x0701	Data	Standar	0x01	x  7F				
00005	15:55:55.614	0xE205F26	ch2	Receive	0x0701	Data	Standar	0x01	x  7F				
00006	15:55:56.634	0xE208634	ch2	Receive	0x0701	Data	Standar	0x01	x  7F				
00007	15:55:57.625	0xE20AD41	ch2	Receive	0x0701	Data	Standar	0x01	x  7F				
80000	15:55:58.615	OxE20D44E	ch2	Receive	0x0701	Data	Standar	0x01	x  7F				
00009	15:55:59.635	0xE20FB5B	ch2	Receive	0x0701	Data	Standar	0x01	x 7F				
00010	15:56:00.625	0xE212268	ch2	Receive	0x0701	Data	Standar	0x01	x  7F				
00011	15:56:01.614	0xE214976	ch2	Receive	0x0701	Data	Standar	0x01	x  7F				
												;	>

Figure 12-5 Heartbeat message return



# **Appendix I: Configuring Third-Party**

## **Motors**

If you wish to configure a third-party motor, please pay attention to the following points:

You need to select a third-party motor that is compatible with the Anpush Technology servo driver, such as a motor with the same or similar rated voltage, rated current, rated torque, and other parameters.

You need to choose the appropriate motor model and specifications based on your application scenario and requirements, such as the motor's maximum speed, rated torque, and rated current.

You need to connect the communication and power lines between the motor and the driver correctly according to the manual provided by Anpush Technology, and set the relevant parameters, such as the communication protocol and control mode.

You need to test the motor's operating performance, such as speed, torque, and temperature, and adjust or optimize according to the actual situation.

For configuring third-party motors, refer to the third-party motor drawings to confirm whether the encoder type is incremental or communication-based, and then find the relevant parameters in the table below.

Parameter Name	Setting Value					
Motor Model	XDDA					
	Bit0: ABZ wiring check					
	bit1: UVW wiring check					
	bit2: UVW as OC output					
Feedback Type	Example: If both encoder ABZ and UVW are					
	differential inputs, input 3.					
	Iff encoder ABZ is differential and UVW is OC					
	input, then input <mark>5</mark>					
	Change unit to DEC					
Eadback Pacalution	encoder lines × 4					
Feedback Resolution	Example: If the encoder has 2500 lines, input					
	10000					
Feedback Period	Same as feedback resolution					
Motor Pole Pairs	Refer to motor drawings					
Excitation Mode	20					
Excitation Current	Default to 3.295 Ap					
Excitation Time	Default to 1000ms					
Motor iit Current	Change unit to Arms, then input the motor's rated					

Incremental Type


	current
Motor iit Time	Default to 60 seconds
Matar Maximum Cumant	Change unit to Arms, then input the motor's
	maximum current
Line-line Inductance	Refer to motor drawings
Line-line Resistance	Refer to motor drawings
Reverse Electromotive Force	Refer to motor drawings
Torque Constant	Refer to motor drawings
Rotor Inertia	Refer to motor drawings
Brake Duty Cycle	Default to 70%
Brake Delay	Default to 150ms
Motor Current Loop Bandwidth	Default to 2000Hz

## Communication Type:

Parameter Name	Setting Value			
Motor Model	Single-turn absolute: XTDA Multi-turn absolute: XMDA			
Feedback Type	8			
Feedback Resolution	If the encoder has x bits of single-turn, then the input value = $2^x$ Example: If the single-turn encoder has 17 bits, then input 131072			
Feedback Period	Change unit to HEX, higher 8 bits for multi-turn bits, lower 8 bits for single-turn bits Example: If the single-turn absolute encoder has 17 bits, then input 17. If the multi-turn absolute encoder has 17 bits, then input 1617			
Motor Pole Pairs	Refer to motor drawings			
Excitation Mode	20			
Excitation Current	Default to 3.295 Ap			
Excitation Time	Default to 1000ms			
Motor iit Current	Change unit to Arms, then input the motor's rated current			
Motor iit Time	Default to 60 seconds			
Motor Maximum Current	Change unit to Arms, then input the motor's maximum current			
Line-line Inductance	Refer to motor drawings			
Line-line Resistance	Refer to motor drawings			
Reverse Electromotive Force	Refer to motor drawings			
Torque Constant	Refer to motor drawings			
Rotor Inertia	Refer to motor drawings			



Brake Duty Cycle	Default to 70%
Brake Delay	Default to 150ms
Motor Current Loop Bandwidth	Default to 2000Hz

1. In the motor configuration interface of the AMPS software, correctly input the motor parameters according to the table above.

- 2. After storing the motor parameters, restart the driver.
- 3. Initialize the motor.
- 4. Store the control parameters.
- 6. Write 1 to "Encoder_Adjust" to start self-tuning the Hall angle
- 7. Wait until "Encoder_Adjust" becomes 0, that is, the self-tuning is complete.

Parameter List × Digital	IO Fu	nctions							-
🖃 🎘 Parameter Group	_								commutation adjusting
🖶 🍋 Default Group	N	Index	Туре	Name	Set Value	Current Value	Uint	^	control
Basic Operation	1	60F60F	Unsigned16	Motor_IIt_Real		0	%		<li>or not tuning complished or not tuning</li>
Velocity Loop	2	641016	Unsigned32	Motor_Using		XDDA	ASCII		1: initialize the parameters
- 📢 Current Loop	3	641001	Unsigned32	Motor_Num		XDDA	ASCII		of commutation, then auto
Motor Setting	4	641002	Unsigned8	Feedback_Type		4	HEX		turning start
Din Spd/Pos Mode	5	641003	Unsigned32	Feedback_Resolution		16384	inc/r		
- 💼 Pulse Mode	6	641004	Unsigned32	Feedback_Period		4000	HEX		
Others	7	641005	Unsigned8	Motor_Pole_Pairs		2	2p/r		
RPDO Config	8	641006	Unsigned8	Commu_Mode		20	DEC		
->> Custom Group	9	641007	Integer16	Commu_Curr		2.330	Arms		
	10	641008	Unsigned16	Commu_Delay		1000	ms		
	11	641009	Unsigned16	Motor_IIt_I		0.990	Arms		
	12	64100A	Unsigned16	Motor_IIt_Filter		59.904	s		
	13	64100B	Unsigned16	Imax_Motor		1.980	Arms		
	14	64100C	Unsigned16	L_Motor		0.82	mH		
	15	64100D	Unsigned16	R_Motor		0.46	Ohm		
	16	64100E	Unsigned16	Ke_Motor		8.6	Vrms/		
	17	64100F	Unsigned16	Kt_Motor		0.14	Nm/A		
	18	641010	Unsigned16	Jr_Motor		0.57	kg*c		
	19	641013	Unsigned8	Invert_Dir_Motor		0	DEC		
	20	300303	Unsigned8	Encoder_Data_Reset		0	HEX		
	21	232008	Unsigned8	Encoder_Adjust				0	
	22	232007	Unsigned16	Comm_Z		432	DEC		
	23	641017	Unsigned8	Motor_Brake		0	DEC		
	24	64101E	Unsigned8	Brake_Voltage		24	v		
	25	641011	Unsigned16	Brake_Duty_Cycle		70	%		
	26	641013	Unclosed16	Brake Dalay		150	-	×	

8. After storing the motor parameters, restart the driver.

9. Set the target current limit to 5Ap, then enable the motor and give speed to see if the motor can run.

10. If the motor cannot run, you can repeat step 6.

11. If it still cannot run after multiple attempts, try to modify parameter "Motor rotary direction" as 1



Parameter List × Digital	IO Fu	nctions							
芦 Parameter Group									motor running di
🕀 芦 Default Group	N	Index	Туре	Name	Set Value	Current Value	Uint	^	
Basic Operation	1	60F60F	Unsigned16	Motor_IIt_Real		0	%		
Velocity Loop	2	641016	Unsigned32	Motor_Using		XDDA	ASCII		
- 🕄 Current Loop	3	641001	Unsigned32	Motor_Num		XDDA	ASCII		
Motor Setting	4	641002	Unsigned8	Feedback_Type		4	HEX		
Din Spd/Pos Mode	5	641003	Unsigned 32	Feedback_Resolution		16384	inc/r		
- 💼 Pulse Mode	6	641004	Unsigned32	Feedback_Period		4000	HEX		
- Conters	7	641005	Unsigned8	Motor_Pole_Pairs		2	2p/r		
- BPDO Config	8	641006	Unsigned8	Commu_Mode		20	DEC		
Custom Group	9	641007	Integer16	Commu_Curr		2.330	Arms		
	10	641008	Unsigned16	Commu_Delay		1000	ms		
	11	641009	Unsigned16	Motor_llt_l		0.990	Arms		
	12	64100A	Unsigned16	Motor_IIt_Filter		59.904	s		
	13	64100B	Unsigned16	Imax_Motor		1.980	Arms		
	14	64100C	Unsigned16	L_Motor		0.82	mH		
	15	64100D	Unsigned16	R_Motor		0.46	Ohm		
	16	64100E	Unsigned16	Ke_Motor		8.6	Vrms/		
	17	64100F	Unsigned16	Kt_Motor		0.14	Nm/A		
	18	641010	Unsigned16	Jr_Motor		0.57	kg*c		
	19	641013	Unsigned8	Invert_Dir_Motor		0	DEC	4	
	20	300303	Unsigned8	Encoder_Data_Reset		0	HEX	T	
	21	232008	Unsigned8	Encoder_Adjust		0	DEC		
	22	232007	Unsigned16	Comm_Z		432	DEC		
	23	641017	Unsigned8	Motor_Brake		0	DEC		
	24	64101E	Unsigned8	Brake_Voltage		24	v		
	25	641011	Unsigned16	Brake_Duty_Cycle		70	%		
	26	641013	Unsignadif	Brake Delau		150	me	v	

12. Store motor parameters and restart driver, then repeat step 6.



## **Appendix II: Use of Braking Resistor**

The braking resistor inside the driver is a component used to consume the regenerative energy generated when the motor brakes. It can protect the driver from overvoltage damage and achieve rapid stopping or deceleration effects. The principle of the braking resistor is to convert the motor's kinetic and magnetic energy into thermal energy, which is then dissipated by the resistance heating, thereby reducing the voltage on the DC bus. This model of the driver connects the braking resistor through CN9's RB+ and RB-, and sets the correct braking resistor resistance value, braking resistor power, etc., through

software. The selection of the braking resistor is related to the motor model, and the

specific selection can refer to the following table:					
Motor Power	Braking Resistor	Braking Resistor	Braking Resistor Voltage		
	Resistance [Ω]	Power [W]	[VDC]		
50W	27	100	500		
100W	10	100	500		
200W	5	100	500		
400W	3.5	200	500		
750W	0.8	700	500		

Parameter	UART	Object	Lipit	Description
Name	Address	Property	Unit	
Braking		Lingian od 16	Ω	Braking resistor resistance
Resistor	60F701	Unsigned to		
Resistance				
Braking	605702	Unsigned16	W	Braking resistor rated power
Resistor Power	00F702	RW		
Braking		Unsigned16	S	Broking register time constant
Resistor Time	60F703			Time in N*256/1000
Constant				TIME IS N 236/1000
Chopping	651006	Unsigned16	V	
Voltage	001000	RW	v	Driver chopping voltage



## Appendix III: Selection of Fuse Specifications

Motor Power (W)	Fuse Reference Specification
50	3A/58VDC
100	5A/58VDC
200	10A/58VDC
400	20A/58VDC
750	40A/58VDC